首页
学习
活动
专区
圈层
工具
发布

scala快速入门系列【函数式编程】

scala可以自动来推断出来集合中每个元素参数的类型 创建函数时,可以省略其参数列表的类型 示例 有一个列表,包含以下元素1,2,3,4,请使用foreach方法遍历打印每个元素 使用类型推断简化函数定义...使用下划线来简化函数定义 当函数参数,只在函数体中出现一次,而且函数体没有嵌套调用时,可以使用下划线来简化函数定义。...因为进行数据计算的时候,就是一个将一种数据类型转换为另外一种数据类型的过程。 map方法接收一个函数,将这个函数应用到每一个元素,返回一个新的列表。 ? 用法 方法签名 ?...案例二 创建一个列表,包含元素1,2,3,4 使用下划线来定义函数,对List中的每一个元素加1 参考代码 ?...---- 好了,到这里本次的分享就结束了。对scala感兴趣的朋友可以持续关注哟~

1.5K20
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    使用 Python 对相似索引元素上的记录进行分组

    groupby() 函数允许我们根据一个或多个索引元素对记录进行分组。让我们考虑一个数据集,其中包含学生分数的数据集,如以下示例所示。...语法 grouped = df.groupby(key) 在这里,Pandas GroupBy 方法用于基于一个或多个键对数据帧中的数据进行分组。“key”参数表示数据分组所依据的一个或多个列。...生成的数据帧显示每个学生的平均分数。...如果键不存在,它会自动创建新的键值对,从而简化分组过程。...groupby() 函数根据日期对事件进行分组,我们迭代这些组以提取事件名称并将它们附加到 defaultdict 中相应日期的键中。生成的字典显示分组记录,其中每个日期都有一个事件列表。

    3.6K30

    初学者的10种Python技巧

    #9 —单行if语句 与前面的技巧一起,单行if可以帮助您使代码更简洁。 假设我们已经决定对确定植物是否为兰花感兴趣。对于单行-if,我们从测试条件为真时要输出的值开始。...new_shelf'] = data.apply(lambda x: sunny_shelf(x.condition, x.music), axis=1) 首先,我们通过使用def 关键字并为其命名并在单词之间加下划线的名称...我们将.apply()函数的输出分配给名为“ new_shelf”的新DataFrame列。...初始化温室清单,创建植物数据框并使用np.where()函数时,我们已经看到了这一点。...#3-创建数据透视表 接下来,假设我们要查看每个植物物种花费的金额。我们可以使用pd.pivot_table() 或 .groupby()进行聚合 。

    3.6K20

    5个例子比较Python Pandas 和R data.table

    /melb_data.csv") # data.table library(data.table) melb <- fread("datasets/melb_data.csv") 示例1 第一个示例是关于基于数据集中的现有列创建新列...示例3 在数据分析中使用的一个非常常见的函数是groupby函数。它允许基于一些数值度量比较分类变量中的不同值。 例如,我们可以计算出不同地区的平均房价。...示例5 在最后一个示例中,我们将看到如何更改列名。例如,我们可以更改类型和距离列的名称。...inplace参数用于将结果保存在原始数据帧中。 对于data.table,我们使用setnames函数。它使用三个参数,分别是表名,要更改的列名和新列名。...需要指出的是,我们在本文中所做的示例只代表了这些库功能的很小一部分。它们提供了许多函数和方法来执行更复杂的操作。 感谢您的阅读。如果你有什么反馈,请告诉我。

    3.7K30

    总结了67个pandas函数,完美解决数据处理,拿来即用!

    不管是业务数据分析 ,还是数据建模。数据处理都是及其重要的一个步骤,它对于最终的结果来说,至关重要。 今天,就为大家总结一下 “Pandas数据处理” 几个方面重要的知识,拿来即用,随查随查。...pd.DataFrame() # 自己创建数据框,用于练习 pd.read_csv(filename) # 从CSV⽂件导⼊数据 pd.read_table(filename) # 从限定分隔符的⽂...df.at[5,"col1"] # 选择索引名称为5,字段名称为col1的数据 df.iat[5,0] # 选择索引排序为5,字段排序为0的数据 数据处理 这里为大家总结16个常见用法。...df.groupby(col1)[col2].agg(mean) # 返回按列col1进⾏分组后,列col2的均值,agg可以接受列表参数,agg([len,np.mean]) df.pivot_table...df1和df2有共同字段时,会报错,可通过设置lsuffix,rsuffix来进⾏解决,如果需要按照共同列进⾏合并,就要⽤到set_index(col1) pd.merge(df1,df2,on='col1

    4.6K30

    精通 Pandas 探索性分析:1~4 全

    点表示法 还有另一种方法可以根据从数据帧中选择的数据子集来创建新序列。 此方法称为点表示法。...我们将使用三列County,Metro和State创建一个新序列。 然后我们将这些序列连接起来,并在数据帧中创建一列称为Address。...Pandas 有一种选择行和列的方法,称为loc。 我们将使用loc方法从之前创建的数据集中调用数据帧。...set_index方法仅在内存中全新的数据帧中创建了更改,我们可以将其保存在新的数据帧中。...第一个参数是需要删除的列的名称; 第二个参数是axis。 此参数告诉drop方法是否应该删除行或列,并将inplace设置为True,这告诉该方法将其从原始数据帧本身删除。

    32.8K10

    pandas技巧4

    to_excel(writer,sheet_name='单位') 和 writer.save(),将多个数据帧写入同一个工作簿的多个sheet(工作表) 查看、检查数据 df.head(n) # 查看DataFrame...df.at[5,"col1"] # 选择索引名称为5,字段名称为col1的数据 df.iat[5,0] # 选择索引排序为5,字段排序为0的数据 data.str.contains("s") # 数据中含有...,col2], ascending=[True,False]) #先按列col1升序排列,后按col2降序排列数据 df.groupby(col) # 返回一个按列col进行分组的Groupby对象 df.groupby...([col1,col2]) # 返回一个按多列进行分组的Groupby对象 df.groupby(col1)[col2].agg(mean) # 返回按列col1进行分组后,列col2的均值,agg可以接受列表参数...=1) # 对DataFrame中的每一行应用函数np.max df.groupby(col1).col2.transform("sum") # 通常与groupby连用,避免索引更改 数据合并 df1

    4.5K20

    精通 Pandas:1~5

    函数的 NumPy 版本:In [10]:产生从 0 到 11 的整数,不包括 12。...使用ndarrays/列表字典 在这里,我们从列表的字典中创建一个数据帧结构。 键将成为数据帧结构中的列标签,列表中的数据将成为列值。 注意如何使用np.range(n)生成行标签索引。...每个项目对应于每个数据帧结构的列。 至于序列和数据帧,有创建面板对象的不同方法。 它们将在后面的章节中进行解释。...any()方法返回布尔数据帧中是否有任何元素为True。 all()方法过滤器返回布尔数据帧中是否所有元素都是True。 其来源是这里。...append函数无法在某些地方工作,但是会返回一个新的数据帧,并将第二个数据帧附加到第一个数据帧上。

    21.8K10

    期待已久的 JS 原生 groupBy() 分组函数即将到来

    具体来说,代码需要不断检查对象中是否已经存在与年龄对应的键,如果不存在则创建一个空数组,并将当前个人对象推入该数组。...这就意味着你可以使用所有常规的 Map 方法来处理它,就像你处理其他 Map 一样。同时,由于它是一个 Map,你可以从回调函数中返回任何类型的值,而不仅仅是作为键的字符串。...这意味着您需要确保键对象是同一个,而不是一个相似但不同的对象。这是因为在 JavaScript 中,对象的引用是唯一的,只有引用相同才能够准确地从 Map 中检索数据。 什么时候可以用呢?...这是因为根据这个提案的说明,曾经有一个库尝试在 Array.prototype 上添加了一个不兼容的 groupBy 方法的补丁。在设计新的 API 时,特别是在网络环境下,保持向后兼容性非常重要。...JAVASCRIPT正在填补空白 将事物分成一组是我们开发者常常需要做的事情,就好像整理东西一样重要。每周,有大约150万到200万次人们从npm上下载lodash.groupBy这个工具。

    2.3K20

    Python 学习小笔记

    如果元组只有一个元素,元素后要加上逗号,否则括号会被当成运算符: tup1=(550,); 集合 使用{}或者set()来创建集合,但是空的集合只能用set()来创建,{}这样子是创建一个空字典...3 pass 语句 不做任何事情的一个语句,相当于一条空语句 模块 一个模块就是一个.py文件,里面可以定义一些常用的函数或者变量 导入的模块应该在当前代码目录或者在sys.path所定义的目录中 from...可以访问到 private属性、方法(两个下划线开头) __privateAttr 方法 类的方法里面第一个参数要为self,是this的意思 继承 类B继承于类A: class B(A):...可用 对数据分组进行计算,比如计算分组的平均数等 有点类似于数据库中的groupby计算,涉及至少两列数据,用法有两种(例 要对列A根据列B进行分组并计算平均值) 1....对整个dataframe进行groupby,然后访问列A的mean() >>>data.groupby(['B'])['A'].mean() dataframe中axis的意义 这里有一篇博客说的很详细

    1.4K30

    《Kotlin 程序设计》第十二章 Kotlin的多线程

    协程通过挂起函数支持:对这样的函数的调用可能会挂起协程,并启动一个新的协程,我们通常使用匿名挂起函数(即挂起 lambda 表达式)。...现在你可以在同一个文件中的任何地方定义一个密封类的子类,而不只是以作为密封类嵌套类的方式。 数据类现在可以扩展其他类。...下划线用于未使用的参数 对于具有多个参数的 lambda 表达式,可以使用 _ 字符替换不使用的参数的名称: 创建一个中间的映射, // 而“groupingBy”的方式会即时计数。...() } Map.minus(key) 运算符 plus 提供了一种将键值对添加到只读映射中以生成新映射的方法,但是没有一种简单的方法来做相反的操作:从映射中删除一个键采用不那么直接的方式如 Map.filter

    3.8K10

    数据科学 IPython 笔记本 7.11 聚合和分组

    在本节中,我们将探讨 Pandas 中的聚合,从类似于我们在 NumPy 数组中看到的简单操作,到基于groupby概念的更复杂的操作。...GroupBy对象 GroupBy对象是一个非常灵活的抽象。在许多方面,你可以简单地将它视为DataFrame的集合,它可以解决困难的问题。让我们看一些使用行星数据的例子。...,从原始的DataFrame组中选择了一个特定的Series组。...5 C 5 9 filter函数应返回一个布尔值,指定组是否通过过滤。...这里因为组 A 没有大于 4 的标准差,所以从结果中删除它。 转换 虽然聚合必须返回数据的简化版本,但转换可以返回完整数据的某些重新组合的转换版本。对于这种变换,输出与输入的形状相同。

    4.7K20

    数据科学的原理与技巧 三、处理表格数据

    ,我们将首先创建一个序列,其中每个想要保留的行为True,每个想要删除的行为False。...上一节中的问题与这个问题有相似之处;上一节中的问题将名称限制为 2016 年出生的婴儿,而这个问题要求所有年份的名称。...现在让我们使用多列分组,来计算每年和每个性别的最流行的名称。 由于数据已按照年和性别的递减顺序排序,因此我们可以定义一个聚合函数,该函数返回每个序列中的第一个值。...我们可以将这个问题分解为两个步骤: 计算每个名称的最后一个字母。 按照最后一个字母和性别分组,使用计数来聚合。 绘制每个性别和字母的计数。...我们现在可以将最后一个字母的这一列添加到我们的婴儿数据帧中。

    5.9K10

    Python pandas十分钟教程

    包括如何导入数据集以及浏览,选择,清理,索引,合并和导出数据等常用操作的函数使用,这是一个很好的快速入门指南,如果你已经学习过pandas,那么这将是一个不错的复习。...也就是说,500意味着在调用数据帧时最多可以显示500列。 默认值仅为50。此外,如果想要扩展输显示的行数。....unique():返回'Depth'列中的唯一值 df.columns:返回所有列的名称 选择数据 列选择:如果只想选择一列,可以使用df['Group']....数据清洗 数据清洗是数据处理一个绕不过去的坎,通常我们收集到的数据都是不完整的,缺失值、异常值等等都是需要我们处理的,Pandas中给我们提供了多个数据清洗的函数。...按列连接数据 pd.concat([df, df2], axis=1) 按行连接数据 pd.concat([df, df2], axis=0) 当您的数据帧之间有公共列时,合并适用于组合数据帧。

    12.5K50

    PySpark SQL——SQL和pd.DataFrame的结合体

    ,由下划线连接,例如some_funciton) 02 几个重要的类 为了支撑上述功能需求和定位,PySpark中核心的类主要包括以下几个: SparkSession:从名字可以推断出这应该是为后续spark...1)创建DataFrame的方式主要有两大类: 从其他数据类型转换,包括RDD、嵌套list、pd.DataFrame等,主要是通过spark.createDataFrame()接口创建 从文件、数据库中读取创建...:删除指定列 最后,再介绍DataFrame的几个通用的常规方法: withColumn:在创建新列或修改已有列时较为常用,接收两个参数,其中第一个参数为函数执行后的列名(若当前已有则执行修改,否则创建新列...),第二个参数则为该列取值,可以是常数也可以是根据已有列进行某种运算得到,返回值是一个调整了相应列后的新DataFrame # 根据age列创建一个名为ageNew的新列 df.withColumn('...;而select准确的讲是筛选新列,仅仅是在筛选过程中可以通过添加运算或表达式实现创建多个新列,返回一个筛选新列的DataFrame,而且是筛选多少列就返回多少列,适用于同时创建多列的情况(官方文档建议出于性能考虑和防止内存溢出

    12.4K20

    用 Python 对新冠病毒做数据分析,我们得出哪些结论?

    该小组从世界卫生组织、当地疾控中心和媒体等不同渠道收集了这些数据。他们还创建了一个实时仪表盘来监控病毒的传播。 免责声明:请注意,数据集没有更新,因此下面记录的结果可能不是当前现状的真实反映。...让我们首先对数据集有一个基本的了解,并在必要时执行数据清洗操作。...describe() 方法返回数据帧中数值列的一般统计信息。 这个输出可以得到的一个直接结论是,数据已经累积报告,即任何一天报告的病例数包括先前报告的病例。...duplicated() 方法返回一个布尔序列,然后将其用作原始数据帧的掩码。结果显示没有两个记录具有相同的国家、州和日期。因此我们可以得出结论,数据集中的所有观测值都是唯一的。...让我们根据从数据的不同方面创建五个可视化图。

    2K11

    pandas基础:使用Python pandas Groupby函数汇总数据,获得对数据更好地理解

    标签:Python与Excel, pandas 在Python中,pandas groupby()函数提供了一种方便的方法,可以按照我们想要的任何方式汇总数据。...图3 实际上,我们可以使用groupby对象的.agg()方法将上述两行代码组合成一行,只需将字典传递到agg()。字典键是我们要处理的数据列,字典值(可以是单个值或列表)是我们要执行的操作。...要更改agg()方法中的列名,我们需要执行以下操作: 关键字是新的列名 这些值是命名元组 pd.namedagh,第一个参数用于列,第二个参数用于指定操作 图6 pd.NamedAgg是一个名称元组...GroupBy对象包含一组元组(每组一个)。在元组中,第一个元素是类别名称,第二个元素是属于特定类别的子集数据。因此,这是拆分步骤。 我们也可以使用内置属性或方法访问拆分的数据集,而不是对其进行迭代。...图14 可能还注意到,我们可以使用.loc方法获得与上面的groupby方法完全相同的结果。然而,.loc方法一次只执行一个操作,而groupby方法自动对每个组应用相同的操作。

    6.2K50
    领券