首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

是否可以从查询中获取访问SQL Server或Oracle中的表的应用程序列表?

是的,可以从查询中获取访问SQL Server或Oracle中的表的应用程序列表。在SQL Server中,可以使用以下查询来获取访问特定表的应用程序列表:

代码语言:txt
复制
SELECT DISTINCT program_name
FROM sys.dm_exec_sessions
WHERE database_id = DB_ID('YourDatabaseName')
AND program_name <> 'Microsoft SQL Server Management Studio'

在Oracle中,可以使用以下查询来获取访问特定表的应用程序列表:

代码语言:txt
复制
SELECT DISTINCT program
FROM v$session
WHERE sid IN (
  SELECT DISTINCT sid
  FROM v$mystat
  WHERE rownum = 1
  CONNECT BY LEVEL <= 100
)
AND type = 'USER'
AND username = 'YourUsername'
AND osuser IS NOT NULL;

这些查询将返回访问特定表的应用程序的列表。根据需要,可以将查询中的数据库名称和用户名替换为实际的数据库名称和用户名。

对于腾讯云相关产品,可以使用腾讯云数据库SQL Server版或腾讯云数据库Oracle版来托管SQL Server或Oracle数据库。您可以通过以下链接了解更多关于腾讯云数据库SQL Server版和腾讯云数据库Oracle版的信息:

页面内容是否对你有帮助?
有帮助
没帮助

相关·内容

  • 多维数据库概述之一---多维数据库的选择

    1. 多维数据库简介 多维数据库(Multi Dimesional Database,MDD)可以简单地理解为:将数据存放在一个n维数组中,而不是像关系数据库那样以记录的形式存放。因此它存在大量稀疏矩阵,人们可以通过多维视图来观察数据。多维数据库增加了一个时间维,与关系数据库相比,它的优势在于可以提高数据处理速度,加快反应时间,提高查询效率。MDD的信息是以数组形式存放的,所以它可以在不影响索引的情况下更新数据。因此MDD非常适合于读写应用。 1.1. 关系数据库存在的问题 利用SQL进行关系数据库查询的局限性: 1) 查询因需要“join”多个表而变得比较烦琐 ,查询语句(SQL) 不好编程; 2) 数据处理的开销往往因关系型数据库要访问复杂数据而变得很大。 关系型数据库管理系统本身局限性: 1) 数据模型上的限制 关系数据库所采用的两维表数据模型,不能有效地处理在大多数事务处理应用中,典型存在的多维数据。其不可避免的结果是,在复杂方式下,相互作用表的数量激增,而且还不能很好地提供模拟现实数据关系的模型。关系数据库由于其所用数据模型较多,还可能造成存储空间的海量增加和大量浪费,并且会导致系统的响应性能不断下降。而且,在现实数据中,有许多类型是关系数据库不能较好地处理的 。 2) 性能上的限制 为静态应用例如报表生成,而设计的关系型数据库管理系统,并没有经过针对高效事务处理而进行的优化过程。其结果往往是某些关系型数据库产品,在对GUI和Web的事务处理过程中,没有达到预期的效果。除非增加更多的硬件投资,但这并不能从根本上解决问题。 用关系数据库的两维表数据模型,可以处理在大多数事务处理应用中的典型多维数据,但其结果往往是建立和使用大量的数据表格,仍很难建立起能模拟现实世界的数据模型。并且在数据需要作报表输出时,又要反过来将已分散设置的大量的两维数据表,再利用索引等技术进行表的连接后,才能找到全部所需的数据,而这又势必影响到应用系统的响应速度。 3) 扩展伸缩性上的限制 关系数据库技术在有效支持应用和数据复杂性上的能力是受限制的。关系数据库原先依据的规范化设计方法,对于复杂事务处理数据库系统的设计和性能优化来说,已经无能为力。此外,高昂的开发和维护费用也让企业难以承受。 4) 关系数据库的检索策略,如复合索引和并发锁定技术,在使用上会造成复杂性和局限性。 1.2. 多维数据库的相关定义 维(Dimension):是人们观察数据的特定角度,是考虑问题时的一类属性,属性集合构成一个维(时间维、地理维等)。 维的层次(Level):人们观察数据的某个特定角度(即某个维)还可以存在细节程度不同的各个描述方面(时间维:日期、月份、季度、年)。 维的成员(Member):维的一个取值,是数据项在某维中位置的描述。(“某年某月某日”是在时间维上位置的描述)。 度量(Measure):多维数组的取值。(2000年1月,上海,笔记本电脑,0000)。 OLAP的基本多维分析操作有钻取(Drill-up和Drill-down)、切片(Slice)和切块(Dice)、以及旋转(Pivot)等。 钻取:是改变维的层次,变换分析的粒度。它包括向下钻取(Drill-down)和向上钻取(Drill-up)/上卷(Roll-up)。Drill-up是在某一维上将低层次的细节数据概括到高层次的汇总数据,或者减少维数;而Drill-down则相反,它从汇总数据深入到细节数据进行观察或增加新维。 切片和切块:是在一部分维上选定值后,关心度量数据在剩余维上的分布。如果剩余的维只有两个,则是切片;如果有三个或以上,则是切块。 旋转:是变换维的方向,即在表格中重新安排维的放置(例如行列互换)。 1.3. 多维数据库的特点 后关系型数据库的主要特征是将多维处理和面向对象技术结合到关系数据库上。这种数据库使用强大而灵活的对象技术,将经过处理的多维数据模型的速度和可调整性结合起来。由于它独有的可兼容性,对于开发高性能的交换处理应用程序来说,后关系型数据库非常理想.在后关系型数据库管理系统中,采用了更现代化的多维模型,作为数据库引擎。并且,这种以稀疏数组 为基础的独特的多维数据库架构,是从已成为国际标准的数据库语言基础上继承和发展的,是已积累了实践经验的先进而可靠的技术。 多维数据模型能使数据建模更加简单,因为开发人员能够方便地用它来描述出复杂的现实世界结构,而不必忽略现实世界的问题,或把问题强行表现成技术上能够处理的形态,而且多维数据模型使执行复杂处理的时间大大缩短。例如开发一个服装连锁店信息管理系统时,如果用关系数据库,就需要建立许多表,一张表用来说明每种款式所具有的颜色和尺寸,另一张表用来建立服装和供应商之间的映射,并表示它是否已被卖出,此外还需要建一些表来表示价格变化、各店的库存等等。每成交一笔生意,所有这些表都需要修改,很快这些关系数据库就会变得笨重而

    02

    第一章《初识数据库》

    (1)什么是数据库: 硬盘—管理软件 数据库(DataBase、DB)是一个长期存储在计算机内、有组织的、有共享的、统一管理的数据集合。他简而言之就是一个存储数据的仓库。为了方便数据的存储和管理,他将数据按照特定的规律存储在硬盘上,通过数据库管理系统,可以有效的组织和管理存储再数据库中的数据。 我们也可以说数据库是由一批数据库的有序集合,这些数据被存放在结构化的数据表里。数据表之间相互关联、反映了客观事物间的本质联系。数据库系统提供对数据的安全控制和完整性控制。 2.数据库系统: 数据库系统由3部分组成: (1)数据库:用于存储数据的地方 (2)数据库管理系统:用于管理数据的软件 (3)数据库应用程序:为了提高数据库系统的处理能力所使用的管理数据的软件补充;

    03

    第一章《初识数据库》

    (1)什么是数据库: 硬盘—管理软件 数据库(DataBase、DB)是一个长期存储在计算机内、有组织的、有共享的、统一管理的数据集合。他简而言之就是一个存储数据的仓库。为了方便数据的存储和管理,他将数据按照特定的规律存储在硬盘上,通过数据库管理系统,可以有效的组织和管理存储再数据库中的数据。 我们也可以说数据库是由一批数据库的有序集合,这些数据被存放在结构化的数据表里。数据表之间相互关联、反映了客观事物间的本质联系。数据库系统提供对数据的安全控制和完整性控制。 2.数据库系统: 数据库系统由3部分组成: (1)数据库:用于存储数据的地方 (2)数据库管理系统:用于管理数据的软件 (3)数据库应用程序:为了提高数据库系统的处理能力所使用的管理数据的软件补充;

    02

    这是我见过最有用的Mysql面试题,面试了无数公司总结的(内附答案)

    1.什么是数据库? 数据库是组织形式的信息的集合,用于替换,更好地访问,存储和操纵。 也可以将其定义为表,架构,视图和其他数据库对象的集合。 2.什么是数据仓库? 数据仓库是指来自多个信息源的中央数据存储库。 这些数据经过整合,转换,可用于采矿和在线处理。 3.什么是数据库中的表? 表是一种数据库对象,用于以保留数据的列和行的形式将记录存储在并行中。 4.什么是数据库中的细分? 数据库表中的分区是分配用于在表中存储特定记录的空间。 5.什么是数据库中的记录? 记录(也称为数据行)是表中相关数据的有序集

    02

    MyCat:第三章:Mycat概述

    Mycat概述 功能介绍 Mycat是什么?从定义和分类来看,它是一个开源的分布式数据库系统,是一个实现了MySQL协议的的Server,前端用户可以把 它看作是一个数据库代理,用MySQL客户端工具和命令行访问,而其后端可以用MySQL原生(Native)协议与多个MySQL服务 器通信,也可以用JDBC协议与大多数主流数据库服务器通信,其核心功能是分表分库,即将一个大表水平分割为N个小表,存储 在后端MySQL服务器里或者其他数据库里。 Mycat发展到目前的版本,已经不是一个单纯的MySQL代理了,它的后端可以支持MySQL、SQL Server、Oracle、DB2、 PostgreSQL等主流数据库,也支持MongoDB这种新型NoSQL方式的存储,未来还会支持更多类型的存储。而在最终用户看 来,无论是那种存储方式,在Mycat里,都是一个传统的数据库表,支持标准的SQL语句进行数据的操作,这样一来,对前端业 务系统来说,可以大幅降低开发难度,提升开发速度,在测试阶段,可以将一个表定义为任何一种Mycat支持的存储方式,比如 MySQL的MyASIM表、内存表、或者MongoDB、LevelDB以及号称是世界上最快的内存数据库MemSQL上。试想一下,用户表 存放在MemSQL上,大量读频率远超过写频率的数据如订单的快照数据存放于InnoDB中,一些日志数据存放于MongoDB中, 而且还能把Oracle的表跟MySQL的表做关联查询,你是否有一种不能呼吸的感觉?而未来,还能通过Mycat自动将一些计算分析 后的数据灌入到Hadoop中,并能用Mycat+Storm/Spark Stream引擎做大规模数据分析,看到这里,你大概明白了,Mycat是 什么?Mycat就是BigSQL,Big Data On SQL Database。 对于DBA来说,可以这么理解Mycat: Mycat就是MySQL Server,而Mycat后面连接的MySQL Server,就好象是MySQL的存储引擎,如InnoDB,MyISAM等,因 此,Mycat本身并不存储数据,数据是在后端的MySQL上存储的,因此数据可靠性以及事务等都是MySQL保证的,简单的 说,Mycat就是MySQL最佳伴侣,它在一定程度上让MySQL拥有了能跟Oracle PK的能力。 对于软件工程师来说,可以这么理解Mycat: Mycat就是一个近似等于MySQL的数据库服务器,你可以用连接MySQL的方式去连接Mycat(除了端口不同,默认的Mycat端 口是8066而非MySQL的3306,因此需要在连接字符串上增加端口信息),大多数情况下,可以用你熟悉的对象映射框架使用 Mycat,但建议对于分片表,尽量使用基础的SQL语句,因为这样能达到最佳性能,特别是几千万甚至几百亿条记录的情况下。 对于架构师来说,可以这么理解Mycat: Mycat是一个强大的数据库中间件,不仅仅可以用作读写分离、以及分表分库、容灾备份,而且可以用于多租户应用开发、云平 台基础设施、让你的架构具备很强的适应性和灵活性,借助于即将发布的Mycat智能优化模块,系统的数据访问瓶颈和热点一目 了然,根据这些统计分析数据,你可以自动或手工调整后端存储,将不同的表映射到不同存储引擎上,而整个应用的代码一行也 不用改变。 当前是个大数据的时代,但究竟怎样规模的数据适合数据库系统呢?对此,国外有一个数据库领域的权威人士说了一个结论:千 亿以下的数据规模仍然是数据库领域的专长,而Hadoop等这种系统,更适合的是千亿以上的规模。所以,Mycat适合1000亿条 以下的单表规模,如果你的数据超过了这个规模,请投靠Mycat Plus吧! Mycat原理 Mycat的原理并不复杂,复杂的是代码,如果代码也不复杂,那么早就成为一个传说了。 Mycat的原理中最重要的一个动词是“拦截”,它拦截了用户发送过来的SQL语句,首先对SQL语句做了一些特定的分析:如分 片分析、路由分析、读写分离分析、缓存分析等,然后将此SQL发往后端的真实数据库,并将返回的结果做适当的处理,最终再 返回给用户。 上述图片里,Orders表被分为三个分片datanode(简称dn),这三个分片是分布在两台MySQL Server上(DataHost),即 datanode=database@datahost方式,因此你可以用一台到N台服务器来分片,分片规则为(sharding rule)典型的字符串枚举 分片规则,一个规则的定义是分片字段(sharding column)+分片函数(rule function),这里的分片字段为prov而分片函数为字 符串枚举方式。 当Mycat收到一个SQL时,会先解析这个SQL,查找涉及到的表,然后看此表的定义,如果有分片规则,则获取到SQL里分片字 段的值,并匹配分片函数,得到该

    02
    领券