首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

时间对象的自然语言生成

是指将计算机中的时间数据转化为人类可以理解的自然语言表达形式。通过自然语言生成技术,可以将时间数据转化为易于理解和使用的语言描述,方便用户进行时间相关的操作和决策。

时间对象的自然语言生成可以应用于多个领域,例如日程管理、智能助手、语音交互等。在日程管理中,可以将时间对象转化为自然语言,帮助用户更方便地安排和管理日程。在智能助手中,可以通过自然语言生成技术,将时间数据转化为语言描述,提供更人性化的交互体验。在语音交互中,可以将时间对象转化为自然语言,实现与计算机的自然对话。

腾讯云提供了一系列与时间相关的产品和服务,包括云函数(Serverless)、云数据库(TencentDB)、人工智能(AI)等。云函数(Serverless)可以帮助开发者快速构建和部署无服务器应用,实现时间对象的自然语言生成功能。云数据库(TencentDB)提供了高可用、高性能的数据库服务,可以存储和管理时间数据。人工智能(AI)服务可以提供自然语言处理和生成的能力,帮助实现时间对象的自然语言生成。

更多关于腾讯云相关产品和服务的介绍,请访问腾讯云官方网站:https://cloud.tencent.com/

页面内容是否对你有帮助?
有帮助
没帮助

相关·内容

  • 2022年CCF-腾讯犀牛鸟基金课题介绍—知识图谱与自然语言处理&语音技术

    CCF-腾讯犀牛鸟基金于2013年由腾讯公司和中国计算机学会(CCF)共同发起,今年是基金发起的第10年。10年来,犀牛鸟基金致力于为海内外青年学者搭建产学合作创新的平台,推动科技在产业创新和社会发展中持续发挥价值。 本年度犀牛鸟基金设立12个技术领域共35项研究命题,我们将分7期对各项命题进行详细介绍,本文重点聚焦知识图谱与自然语言处理&语音技术领域,欢迎海内外优秀青年学者关注并申报。 6.知识图谱与自然语言处理 6.1 自然语言生成 自然语言生成是指在特定的交互目标下,根据给定的输入信息生成人类可读的自

    01

    自然语言生成的演变史

    【导读】自科幻电影诞生以来,社会一直对人工智能着迷。 每当我们听到“AI”一词时,我们的第一个想法通常是电影中的未来机器人,如终结者和黑客帝国。尽管我们距离可以自己思考的机器人还有几年的时间,但在过去几年中,机器学习和自然语言理解领域已经取得了重大进展。 个人助理(Siri / Alexa),聊天机器人和问答机器人等应用程序真正彻底改变了我们与机器和开展日常生活的方式。自然语言理解(NLU)和自然语言生成(NLG)是人工智能发展最快的应用之一,因为人们越来越需要理解和从语言中获得意义,其中含有大量含糊不清的结构。 根据Gartner的说法,“到2019年,自然语言生成将成为90%的现代BI和分析平台的标准功能”。 在这篇文章中,我们将讨论NLG成立初期的简短历史,以及它在未来几年的发展方向。

    03

    每日论文速递 | 【ICLR'24 Oral】LoftQ: 更好地将LLM量化与LoRA微调结合

    摘要:量化是为服务大语言模型(LLMs)不可或缺的技术,最近已经应用到LoRA微调中。在这项工作中,我们关注的是在一个预训练模型上同时应用量化和LoRA微调的情景。在这种情况下,通常会观察到在下游任务性能上的一致差距,即在完全微调和量化加LoRA微调方法之间。为了应对这一问题,我们提出了LoftQ(LoRA微调感知量化),这是一个新颖的量化框架,可以同时对LLM进行量化并找到LoRA微调的适当低秩初始化。这种初始化缓解了量化和全精度模型之间的差异,并显著提高了在下游任务中的泛化性能。我们在自然语言理解、问答、摘要和自然语言生成任务上评估了我们的方法。实验证明我们的方法非常有效,并在具有挑战性的2比特和2/4比特混合精度区域中优于现有的量化方法。

    01
    领券