通过数据分析可以知道商业模式是否可行,评判那种推广渠道效率最高,能发现网站、商品结构、物流等各个环节的问题,能评估改进效果。 有哪些数据? 线上平台的数据来源有网站统计工具、ERP系统、客服回访问卷投诉等。 线上数据主要包含:访问量(IP UV PV)、平均浏览时长(浏览量)、新UV比例、跳出率、转化率(注册、订单、支付)、流量来源(搜索、直接、连接、地区、推广)、网页打开时间、网站热点、搜索分析等。 ERP数据主要包含:订单量、客单价、毛利率、二次购买率、忠实顾客转化率、顾客流失率、动销率、缺货率、商品
通过数据分析可以知道商业模式是否可行,评判那种推广渠道效率最高,能发现网站、商品结构、物流等各个环节的问题,能评估改进效果。 有哪些数据? 线上平台的数据来源有网站统计工具、ERP系统、客服回访问卷投诉等。 线上数据主要包含:访问量(IP UV PV)、平均浏览时长(浏览量)、新UV比例、跳出率、转化率(注册、订单、支付)、流量来源(搜索、直接、连接、地区、推广)、网页打开时间、网站热点、搜索分析等。 ERP数据主要包含:订单量、客单价、毛利率、二次购买率、忠实顾客转化率、顾客流失率、动销率
08年毕业,不知不觉的混进了电子商务行业,又不知不觉的做了三年数据分析,恰好又赶上了互联网电子商务行业发展最快的几年,也算是不错吧,毕竟感觉前途还是很光明的。三年来,可以说跟很多同事学到了不少东西,需
就数据分析职业来说,个人感觉这对互联网公司来说是非常重要的,也是确实能够带来实际效果的东西。比如说利用数据分析做会员的细分以进行精准化营销;利用数据分析来发现现有的不足,以作改进,让顾客有更好的购物体验;利用CRM系统来管理会员的生命周期,提高会员的忠诚度,避免会员流失;利用会员的购买数据,挖掘会员的潜在需求,提供销售,扩大影响力等等。 最开始进公司的时候是在运营部,主要是负责运营报表的数据,当时的系统还很差,提取数据很困难,做报表也很难,都是东拼西凑一些数据,然后做成PPT,记得当时主要的数据就是销
08年毕业,不知不觉的混进了电子商务行业,又不知不觉的做了三年数据分析,恰好又赶上了互联网电子商务行业发展最快的几年,也算是不错吧,毕竟感觉前途还是很光明的。三年来,可以说跟很多同事学到了不少东西,需要感谢的人很多,他们无私的教给了我很多东西。 就数据分析职业来说,个人感觉这对互联网公司来说是非常重要的,也是确实能够带来实际效果的东西。比如说利用数据分析做会员的细分以进行精准化营销;利用数据分析来发现现有的不足,以作改进,让顾客有更好的购物体验;利用CRM系统来管理会员的生命周期,提高会员的忠诚度,避免会员
有同学问:老师,我们领导总说,要做有用的数据分析。可我废了很大力气,做出来的却被嫌弃:“我早知道了”、“没啥用”。到底要怎么才有用呢?这个问题很常见,我们今天系统解答一下。就拿一个很常见的问题:业绩下滑了,分析下怎么做才能达标?来举个例子:
作为数据分析师最怕什么?莫过于下午5:55分,自己正准备收拾包包走人,一个电话飞进来:“歪!帮忙跑个数,我们总监要,今天无论多晚都得给!”听完这通话,心情直接跌入谷底。 如果有比这还可怕的,就是晚上11:00,你累死累活跑出来数了,对方一句:“哦,好像不是这个数,你换另一个跑法试试,还是今天无论多晚都得给哦……” 如何避免这种问题呢? 数据分析的需求沟通 这个问题显然是出在需求沟通上。没有沟通清楚需求就动手,自然会来来回回返工。不但自己做得辛苦,业务部门也不满意。所以沟通需求很重要。而数据分析是有标准的需求
数据分析写的运营分析报告,和运营写的数据分析报告,到底有啥区别?这不是个绕口令,而是困扰很多同学的真实问题。特别在很多推崇“数据思维”“科学管理”的公司里。大老板喜欢看报告,下边的人人奋笔疾书,好不壮观。
年初各种盘点、总结、回顾类的报告很多,有一类“不带脑子”的队友纷纷上线,搞得做数据分析的同学们非常蛋疼。具体表现吗,看下图:
来源:www.cnblogs.com/skabyy/p/11396571.html
本文将介绍微服务架构和相关的组件,介绍他们是什么以及为什么要使用微服务架构和这些组件。本文侧重于简明地表达微服务架构的全局图景,因此不会涉及具体如何使用组件等细节。
几年前,小明和小皮一起创业做网上超市。小明负责程序开发,小皮负责其他事宜。当时互联网还不发达,网上超市还是蓝海。只要功能实现了就能随便赚钱。所以他们的需求很简单,只需要一个网站挂在公网,用户能够在这个网站上浏览商品、购买商品;另外还需一个管理后台,可以管理商品、用户、以及订单数据。
转载来源:https://www.cnblogs.com/skabyy/p/11396571.html
要理解微服务,首先要先理解不是微服务的那些。通常跟微服务相对的是单体应用,即将所有功能都打包成在一个独立单元的应用程序。从单体应用到微服务并不是一蹴而就的,这是一个逐渐演变的过程。本文将以一个网上超市应用为例来说明这一过程。
进入9月后,各种大促销在即,数据分析师们又到了一年最辛苦,最悲催的时间段。然而,有多少无意义的加班,是因为业务部门不会提需求导致的。需求提得不合理,业务部门看了不解决问题,就会反反复复地再提需求。导致数据分析师们辛苦加班还不落好,背上一个:“分析没深度啊!”的坏名声。
光知道怎么看数据,还是不成,你得熟悉这些数据拿到手上之后怎么去用它,怎么让数据显示出来它本身的威力来。最后总结下来有这么几个部分。 第一个部分,是看历史数据,发现规律。 以社区中的活动和电商中的促销为例,这些都是常见的活动,活动做得好的话有意想不到的效果。在做这样的活动,最好是拿到前一个月或者两个月的历史数据。对电商来说,从这里面要去分析各个品类的销售情况,那个品类销量最大,那个品类销量最小,每月或者每周的平均增长率和符合增长率是多少。通过原始数据把上面的这些指标分析出来之后,就可以看到哪些品类是优势品类,
问题:费时费力的花钱举办了一场打折优惠促销活动,可是零售商家如何知道活动办得好不好?
前言 最近开学季,各大平台又开始搞各种图书促销活动了。 当当的《对比Excel》系列每本书都直接4.9折,三本书仅需98.9,也可以单独买每一本。当当这种力度的活动还是比较少的,平常最低也是5折。 直接在当当APP或网页端搜索书名即可。 京东没有直接打折,但是有满100-50活动,相当于打5折。 建议大家买书的时候最好选择自营店铺,自营店铺在活动期间折扣力度还是很大的,也不算贵。一些不知名小店铺很有可能买到盗版,本来是彩色的图书,盗版是黑白的,会严重影响阅读体验的。 三本书阅读顺序 三本书的建议阅读顺序为
以笔者比较了解的加点、3C产品厂商为例,企业在信息化建设过程中会选择做内部数据分析,例如销售、生产、库存等,这对企业了解自身整体运营情况非常有用,但是这些信息对把握市场动态、了解客户需求来说作用十分有限,而对外部数据的分析工作可以帮我们很好的弥补这些不足。
光知道怎么看数据,还是不成,你得熟悉这些数据拿到手上之后怎么去用它,怎么让数据显示出来它本身的威力来。最后总结下来有这么几个部分。 第一个部分,是看历史数据,发现规律。 以社区中的活动和电商中的促销为例,这些都是常见的活动,活动做得好的话有意想不到的效果。在做这样的活动,最好是拿到前一个月或者两个月的历史数据。对电商来说,从这里面要去分析各个品类的销售情况,哪个品类销量最大,哪个品类销量最小,每月或者每周的平均增长率和复合增长率是多少。通过原始数据把上面的这些指标分析出来之后,就可以看到哪些品类是优势品类,
在数据科学和分析领域,Python语言因其强大的数据处理库而备受青睐。其中,Pandas是Python中最常用的数据分析库之一,而Jupyter Notebook则是一个流行的交互式计算环境,可让用户在浏览器中创建和共享文档,其中包含实时代码、可视化和解释性文本。本文将介绍如何结合Pandas和Jupyter Notebook进行数据分析,并提供一些示例来演示它们的强大功能。
面对日益艰难的市场环境,数据化管理能力将帮助塑造连锁零售企业差异化的核心竞争力,并成为保证其持续盈利的坚固基石。但对于广大的连锁零售服务商而言,要想成功落地“数据驱动”却并非易事,商品管理、门店管理、顾客关系......因素庞杂,难以掌握,又该如何入手呢?别担心,「观远数据连锁零售大数据分析BI解决方案」来为您细细讲解。
任何一家公司都会面对或多或少的客户,产生千万甚至上亿的数据来洞察客户的行为,支撑自身公司业务的发展。
在现代商业环境中,数据分析已成为企业决策的重要工具。通过分析大量数据,企业能够发现潜在的商业机会、优化运营流程、提升客户满意度等。然而,随着数据量的增加和分析方法的多样化,仅依靠简单的相关性分析已不足以解决复杂的商业问题。这时,因果推断模型的重要性便凸显出来。
近年来,实体零售低迷成为趋势,客流下降、渠道管理混乱、高库存、反应慢、以及落后的供应链问题暴露的更加明显。而随着互联网人口红利逐渐消失,电商步入成熟期,许多企业电子商务的发展也逐渐遇到瓶颈。价格战、关店潮、倒闭潮、裁员潮、资金链断裂、股价暴跌等故事在零售业舞台不断上演。
“你做的数据分析有什么用?”是一个面试时经常被问到的问题,也让很多同学犯难。要么不知道从何说起,要么回答完了被人怼回来。今天我们系统性解答一下。
今年环境不好,很多企业都提出了降本增效的口号。可作为数据分析,该如何实现降本增效?今天系统讲解下。
数据分析需要的能力可以分成专业能力和通用能力两部分,本文主要关注的是专业能力的学习,包括业务知识、数据处理、工具使用3部分。
挖掘复杂的数据类型 数据挖掘的其他方法 数据挖掘应用 金融数据分析的数据挖掘 为多维数据分析和数据挖掘设计和构造数据仓库 贷款偿还预测和顾客信用正则分析 针对定向促销的顾客分类与聚类 洗黑钱和其他金融
刚做完给新入职的产品新人关于数据分析的培训,培训的内容主要是一些分析工具的使用上,目的是为了让这些新人能够尽快的开始看一些产品相关的数据。 回忆起这些年自己的工作经历,始终在数据路线上游走。第一份工作是Business Objects的产品研发,Business Objects是一款BI前端分析工具。作为BI分析工具的研发人员,其实是不需要懂得什么BI应用方面的东西的。接着,做了Business Objects的实施顾问,这个逐渐开始接触到一些用户实际的数据需求,但仍然是停留在工具如何使用的层面给与客户支持
以上是数据分析师们写报告的时候最怕的四大场景。之前已经分享了前俩,今天来分享第三个。作为消费者,我们是最喜欢各大APP做活动了,有优惠呀!很多数据分析新人也喜欢,因为比起日报月报,活动分析看起来是个大活,真开心。然而,不小心的话,基于活动数据分析出的结论,经常被打脸,不信,马上试一试。
有同学问:领导总让做“有前瞻性”的分析,不要说那些“大家都知道的事”。可到底什么是前瞻性?有时候明明写了预计未来情况,可还是被批判为:没啥前瞻性。真不知道咋办了。——今天系统解答一下。
互联网时代的信息化,我觉得首先要定一个基调,互联网时代的管理系统信息化应该如何利用新的技术手段为用户企业改善经营,开拓市场提供支持。首先来看互联网时代能够给零售行业带来哪些改变。我认为其中一个很重要的
现在数据分析能力在职场中越来越重要,尤其对运营人来说,数据分析就是运营人职场能力的分水岭,不管是做内容运营、产品运营还是活动、直播运营,数据分析基本上已经成了大厂招聘运营的标配:
以下是一家B2C电子商务网站一周销售数据,该网站主要用户是办公室女性,销售额主要集中在5款产品上,如果你是分析师:
之前陈老师分享了:汽车的速度表,可能是最好用的数据产品了。实际上,日常生活中还有一款数据产品非常普遍、非常好用,那就是——体温计。现在的电子体温计,只要在额头滴一下就知道体温,真方便!谁用谁知道。特别是有宝宝的同学,每家必备。
https://mp.weixin.qq.com/s/xy6RdpAQfuC-bLrOy4_5Bw
超市管理员维护超市区域、超市货架、商品类型、商品档案数据,消费者查询超市区域、超市货架、商品类型、商品档案数据。
相当多的情况是:这帮人不是真想分析问题,而是变着法地证明自己做得好!而恰恰这一个“好”字,难倒了无数人。因为真想让数据分析师说一声“好”,至少得闯过八大关卡。
年底了,很多电商公司、零售企业都会开展如火如荼的大促销活动,那么如何评估产品促销带来的价值呢?
1.设置:站点设置;帐号同步;上传设置;SEO设置;消息通知;支付方式;权限设置;配送地区;
领取专属 10元无门槛券
手把手带您无忧上云