首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    如何使用ELK Stack分析Oracle DB日志

    随着业务的发展,服务越来越多,相应地,日志的种类和数量也越来越多。一般地,我们会用grep、awk,或者编写脚本进行日志分析。对于多个服务构成的系统,需要人为把这些日志分析工作有机地结合起来。在业务系统组件多而组件间关联复杂的情况下,这种分析方法效率十分低下,一个日志分析平台极为必要。从日志的整合和展示看,日志分析平台主要由两部分构成,一是日志整合系统,负责把各组件日志集中并索引起来,以方便快速的搜索和分析,这可以用ELK开源软件进行搭建;二是日志分析展示系统,对各类日志提供尽可能多的自动化分析和评估报表,这需要辨识并固化尽可能多的日志分析的行为模式。这些都基于对ELK的认识和对业务系统各组件日志的理解。

    02

    ELK

    Elk Elasticsearch logstash kibana 传统:Shell sed awk grep 简单的信息筛选 进行海量日志的筛选遇到的问题:1信息搜索(费时) 2 多维度分析 适用于服务器数量少 因此,海量日志的情况下需要日志分析系统 日志分析系统常见方案:ELF /EFK/graylog/流式分析/ELK 日志分析系统作用: 1 信息检索——>快速找到bug——>修复 2 服务诊断——>负载均衡和运行状态——>优化 3 数据分析——> 日志系统的角色(组件): 1 采集端(agent):采集日志源数据,对数据进行封装并发送给聚合端。 2 聚合端(collector):搜集来自多个采集端的日志数据,并按照一定规则进行数据的处理(例如:加索引)。 3 存储端(storage):负责存储来自聚合端的数据。

    01

    ELK

    Elk Elasticsearch logstash kibana 传统:Shell sed awk grep 简单的信息筛选 进行海量日志的筛选遇到的问题:1信息搜索(费时) 2 多维度分析 适用于服务器数量少 因此,海量日志的情况下需要日志分析系统 日志分析系统常见方案:ELF /EFK/graylog/流式分析/ELK 日志分析系统作用: 1 信息检索——>快速找到bug——>修复 2 服务诊断——>负载均衡和运行状态——>优化 3 数据分析——> 日志系统的角色(组件): 1 采集端(agent):采集日志源数据,对数据进行封装并发送给聚合端。 2 聚合端(collector):搜集来自多个采集端的日志数据,并按照一定规则进行数据的处理(例如:加索引)。 3 存储端(storage):负责存储来自聚合端的数据。

    01
    领券