,即解释智能体行为的动机及行为之间的关联.然而,缺乏 对环境和任务的认识使得一些关键问题无从解决:缺乏对环境的认识使人在面临复杂任务时,缺乏对环境内部 规律的理解,导致对环境状态进行抽象时忽略有利信息,...的基础性 问题,并对现有工作进行总结.首先,本文从 XAI 出发,对其通用观点进行总结,作为分析 XRL 问题的基础;然后, 分析 XRL 与 XAI 的共同问题,构建出一套可解释性领域的理论体系,包括界定智能算法和机械算法...XAI 在其他方向(如视觉)的成果;另一方面,XRL 目前仍处于起步阶段,对其针对性的讨论 较少,而对于 XAI,研究者们长期以来进行了广泛的研究和讨论[17] -[24] ,具有深刻的借鉴意义.基于上述原因...在对知识进行转换表达的过程中,待解释的知识可能无法完全通过目标知识体系进行描述,这时只有部分 知识可以被解释.本文使用“完全解释”和“部分解释”的概念描述这一情况:
完全解释:待解释的知识完全被目标知识体系表达...,变得错综复杂,使我们最终无法抓住其主从关系.对于以简洁 结构(如决策树分支)构成的大规模模型,虽然所有结果在理论上有迹可循,但当模型规模已超越人类的理解能 力,导致系统整体将仍然不具备可解释性.
2.4