首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

【文件读取】文件太大怎么办?

关注我们,一起学习~ 我们经常会遇到需要读取大文件的情况,比如十几GB,几十GB甚至更大,而如果直接读取进来,内存可能会爆炸,溢出。笔者最近遇到读取大文件的情况,借此和大家分享一些读取大文件的方法。...改变每一列的类型,从而减少存储量 对于label或者类型不多的列(如性别,0,1,2),默认是int64的,可以将列的类型转换为int8 对于浮点数,默认是float64,可以转换为float32 对于类别型的列...,比如商品ID,可以将其编码为category import pandas as pd reader = pd.read_csv(filename, iterator=True) data = reader.get_chunk...的int64转变为int8 data['0'] = pd.to_numeric(data['0'], downcast='unsigned', errors='coerce') # 计算转变后的数据大小...('category') print(data.memory_usage().sum()/(1024**3)) 原始大小:1.8328GB,转int8后:1.8263GB,转float32后:0.9323GB

2.7K10

更高效的利用Jupyter+pandas进行数据分析,6种常用数据格式效率对比!

在使用Python进行数据分析时,Jupyter Notebook是一个非常强力的工具,在数据集不是很大的情况下,我们可以使用pandas轻松对txt或csv等纯文本格式数据进行读写。...将五个随机生成的具有百万个观测值的数据集转储到CSV中,然后读回内存以获取平均指标。并且针对具有相同行数的20个随机生成的数据集测试了每种二进制格式。...同时使用两种方法进行对比: 1.将生成的分类变量保留为字符串 2.在执行任何I/O之前将其转换为pandas.Categorical数据类型 1.以字符串作为分类特征 下图显示了每种数据格式的平均I/O...2.对特征进行转换 在上一节中,我们没有尝试有效地存储分类特征,而是使用纯字符串,接下来我们使用专用的pandas.Categorical类型再次进行比较。 ?...因为只要在磁盘上占用一点空间,就需要额外的资源才能将数据解压缩回数据帧。即使文件在持久性存储磁盘上需要适度的容量,也可能无法将其加载到内存中。 最后我们看下不同格式的文件大小比较。

2.9K21
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    更高效的利用Jupyter+pandas进行数据分析,6种常用数据格式效率对比!

    在使用Python进行数据分析时,Jupyter Notebook是一个非常强力的工具,在数据集不是很大的情况下,我们可以使用pandas轻松对txt或csv等纯文本格式数据进行读写。...将五个随机生成的具有百万个观测值的数据集转储到CSV中,然后读回内存以获取平均指标。并且针对具有相同行数的20个随机生成的数据集测试了每种二进制格式。...同时使用两种方法进行对比: 1.将生成的分类变量保留为字符串 2.在执行任何I/O之前将其转换为pandas.Categorical数据类型 1.以字符串作为分类特征 下图显示了每种数据格式的平均I/O...2.对特征进行转换 在上一节中,我们没有尝试有效地存储分类特征,而是使用纯字符串,接下来我们使用专用的pandas.Categorical类型再次进行比较。 ?...因为只要在磁盘上占用一点空间,就需要额外的资源才能将数据解压缩回数据帧。即使文件在持久性存储磁盘上需要适度的容量,也可能无法将其加载到内存中。 最后我们看下不同格式的文件大小比较。

    2.4K30

    Pandas高级数据处理:内存优化

    DataFrame 的大小过大有时我们会加载整个 CSV 文件到内存中,即使我们只需要其中的一部分数据。这不仅浪费了内存,还增加了不必要的计算时间。可以通过只读取需要的列或分块读取文件来优化内存使用。...为了避免这种情况,可以采取以下措施:分块读取:使用 pandas.read_csv 的 chunksize 参数分块读取大文件。减少数据量:只加载必要的列或行。...优化数据类型:如前所述,使用更小的数据类型。2. 数据类型转换错误在转换数据类型时,可能会遇到一些意外情况。例如,尝试将包含缺失值的列转换为整数类型会失败。...可以使用 errors='coerce' 参数将无法转换的值设置为 NaN,然后再进行进一步处理。...希望本文能帮助你在实际工作中更好地应用 Pandas 进行高效的数据处理。

    10910

    python-使用pygrib将已有的GRIB1文件中的数据替换为自己创建的数据

    前言 希望修改grib中的变量,用作WRF中WPS前处理的初始场 python对grib文件处理的packages python中对于grib文件的处理方式主要有以下两种库: 1、pygrib 2、xarray...但是,对于本次我的需求,上述方式无法实现。特别是在保存为新的grib文件时,总是报错。...grb['forecastTime'] = 240 grb.dataDate = 20100101 将数据转为grib文件需要的二进制字符串 msg = grb.tostring() grbs.close...问题解决:将滤波后的数据替换原始grib中的数据再重新写为新的grib文件 pygrib写grib文件的优势在于,写出的grib文件,基本上会保留原始grib文件中的信息,基本的Attributes等也不需要自己编辑...'.grib','wb') for i in range(len(sel_u_850)): print(i) sel_u_850[i].values = band_u[i] #将原始文件中的纬向风数据替换为滤波后的数据

    98410

    Pandas 2.2 中文官方教程和指南(十·一)

    date_parser 函数,默认为None 用于将一系列字符串列转换为日期时间实例数组的函数。默认使用dateutil.parser.parser进行转换。...解析具有混合时区的 CSV pandas 无法原生表示具有混合时区的列或索引。...写入 JSON 可以将 Series 或 DataFrame 转��为有效的 JSON 字符串。使用 to_json 和可选参数: path_or_buf : 要写入输出的路径名或缓冲区。...这对于具有前导零的数值文本数据非常有用。默认情况下,数值列会转换为数值类型,前导零会丢失。为了避免这种情况,我们可以将这些列转换为字符串。...作为背景,XSLT 是一种特殊用途的语言,写在一个特殊的 XML 文件中,可以使用 XSLT 处理器将原始 XML 文档转换为其他 XML、HTML,甚至文本(CSV、JSON 等)。

    35000

    Python 读取txt、csv、mat数据并载入到数组

    lable = [ int(x) for x in eachline[-1] ]#lable转换为int型 read_data.append(lable[0])...,最后在mian函数里使用np.arry()函数将其转换为数组形式,这里将两种形式结果都输出): 2、调用numpy中loadtxt()函数快速实现。...二、CSV文件数据载入到数组 在一些数据竞赛里面碰到很多的数据都是.csv文件给出的,说明应用应该还是有一些广泛。...首先这里csv文件编码格式必须为UTF-8,否则会报编码错误信息。(txt转csv文件流程:打开excel—>数据—>导入文本/csv—>编码格式选择UTF-8—>保存选择csv格式)。...csv文件打开如下所示: 首先python内置了csv库,可以调用然后自己手动来写操作的代码,比较简单的csv文件读取载入到数组可以采用python的pandas库中的read_csv()函数来读取

    4.6K40

    在Pandas中更改列的数据类型【方法总结】

    例如,上面的例子,如何将列2和3转为浮点数?有没有办法将数据转换为DataFrame格式时指定类型?或者是创建DataFrame,然后通过某种方法更改每列的类型?...') #示例1 df = pd.DataFrame(data=d, dtype=np.int8) #示例2 df = pd.read_csv("somefile.csv", dtype = {'column_name...软转换——类型自动推断 版本0.21.0引入了infer_objects()方法,用于将具有对象数据类型的DataFrame的列转换为更具体的类型。...int64: >>> df = df.infer_objects() >>> df.dtypes a int64 b object dtype: object 由于’b’的值是字符串,而不是整数...astype强制转换 如果试图强制将两列转换为整数类型,可以使用df.astype(int)。 示例如下: ? ?

    20.3K30

    Pandas高级数据处理:数据流处理

    随着数据量的不断增长,传统的批量数据处理方式可能无法满足实时性和性能要求。因此,掌握Pandas中的数据流处理技术变得尤为重要。...解决方法:确保文件格式正确,并且使用正确的参数读取文件。例如,在读取CSV文件时,如果分隔符不是默认的逗号,需要指定sep参数。...代码示例:import pandas as pd# 假设有一个以分号分隔的CSV文件df = pd.read_csv('data.csv', sep=';')内存不足对于大规模数据流,一次性将所有数据加载到内存中可能会导致内存溢出...解决方法:使用astype()方法将数据转换为正确的类型。...代码示例:# 将字符串列转换为数值列再进行运算df['string_column'] = pd.to_numeric(df['string_column'], errors='coerce')result

    8010

    Pandas数据应用:机器学习预处理

    数据加载与初步检查1.1 数据加载在开始任何预处理之前,首先需要将数据加载到Pandas DataFrame中。Pandas支持多种文件格式,如CSV、Excel、JSON等。...最常用的是read_csv()函数来读取CSV文件。...文件编码不正确导致乱码。数据类型不符合预期,例如日期字段被识别为字符串。解决方案:确保文件路径正确,可以使用相对路径或绝对路径。使用encoding参数指定正确的编码格式。...# 将某列转换为整数类型df['column'] = df['column'].astype(int)# 将某列转换为日期时间类型df['date_column'] = pd.to_datetime(df...使用errors='coerce'参数将无法转换的值设置为NaN,以便后续处理。4. 数据标准化与归一化4.1 标准化标准化是将数据转换为均值为0、标准差为1的过程。

    21710

    Python 数据分析(PYDA)第三版(三)

    );等同于使用选择该表中的所有内容的查询使用read_sql read_stata 从 Stata 文件格式中读取数据集 read_xml 从 XML 文件中读取数据表 我将概述这些函数的机制,这些函数旨在将文本数据转换为...escapechar 如果 quoting 设置为 csv.QUOTE_NONE,用于转义分隔符的字符串;默认情况下禁用。 注意 对于具有更复杂或固定多字符分隔符的文件,您将无法使用 csv 模块。...pandas 有一个内置函数pandas.read_html,它使用所有这些库自动将 HTML 文件中的表格解析为 DataFrame 对象。...具有大量字符串数据的数据集在计算上是昂贵的,并且使用了大量内存。 一些数据类型,如时间间隔、时间增量和带时区的时间戳,如果不使用计算昂贵的 Python 对象数组,将无法有效支持。..., lstrip 修剪空格,包括右侧、左侧或两侧的换行符 split 使用传递的分隔符将字符串拆分为子字符串列表 lower 将字母字符转换为小写 upper 将字母字符转换为大写 casefold 将字符转换为小写

    33400

    一句python,一句R︱列表、元组、字典、数据类型、自定义模块导入(格式、去重)

    () Tuple(元组) 使用:() tuple() Dictionary(字典) 使用:{ } dict() 其中pandas和numpy中的数组格式 以及Series...创建一个复数 str(x) 将对象 x 转换为字符串 repr(x) 将对象 x 转换为表达式字符串 eval(str) 用来计算在字符串中的有效Python表达式,并返回一个对象 tuple(s) 将序列...frozenset(s) 转换为不可变集合 chr(x) 将一个整数转换为一个字符 unichr(x) 将一个整数转换为Unicode字符 ord(x) 将一个字符转换为它的整数值 hex(x) 将一个整数转换为一个十六进制字符串...oct(x) 将一个整数转换为一个八进制字符串 2、字符串 str() 字符串或串(String)是由数字、字母、下划线组成的一串字符。...通过pickle模块的序列化操作我们能够将程序中运行的对象信息保存到文件中去,永久存储;通过pickle模块的反序列化操作,我们能够从文件中创建上一次程序保存的对象 保存: #使用pickle模块将数据对象保存到文件

    6.9K20

    Python—关于Pandas的缺失值问题(国内唯一)

    获取文中的CSV文件用于代码编程,请看文末,关注我,致力打造别人口中的公主 在本文中,我们将使用Python的Pandas库逐步完成许多不同的数据清理任务。...预期的类型是什么(int,float,string,boolean)? 是否有明显的缺失数据(熊猫可以检测到的值)? 是否还有其他类型的丢失数据不太明显(无法通过Pandas轻松检测到)?...了说明我的意思,让我们开始研究示例。 我们要使用的数据是非常小的房地产数据集。获取CSV文件,你可以在文末得到答案,以便可以进行编码。 ? 快速浏览一下数据: 快速了解数据的一种好方法是查看前几行。...稍后我们将使用它来重命名一些缺失的值。 导入库后,我们将csv文件读取到Pandas数据框中。 使用该方法,我们可以轻松看到前几行。...要尝试将条目更改为整数,我们使用。int(row) 如果可以将值更改为整数,则可以使用Numpy's将条目更改为缺少的值。np.nan 另一方面,如果不能将其更改为整数,我们pass将继续。

    3.2K40

    资源 | 23种Pandas核心操作,你需要过一遍吗?

    选自 Medium 作者:George Seif 机器之心编译 参与:思源 本文转自机器之心,转载需授权 Pandas 是一个 Python 软件库,它提供了大量能使我们快速便捷地处理数据的函数和方法...pd.read_excel("excel_file") (3)将 DataFrame 直接写入 CSV 文件 如下采用逗号作为分隔符,且不带索引: df.to_csv("data.csv", sep...,「headers」为表头字符串组成的列表。...(12)将目标类型转换为浮点型 pd.to_numeric(df["feature_name"], errors='coerce') 将目标类型转化为数值从而进一步执行计算,在这个案例中为字符串。...] DataFrame 操作 (16)对 DataFrame 使用函数 该函数将令 DataFrame 中「height」行的所有值乘上 2: df["height"].apply(*lambda* height

    2.9K20

    Pandas 数据类型概述与转换实战

    对于 pandas 来说,它会在许多情况下自动推断出数据类型 尽管 pandas 已经自我推断的很好了,但在我们的数据分析过程中,可能仍然需要显式地将数据从一种类型转换为另一种类型。...使用 pandas 函数,例如 to_numeric() 或 to_datetime() 使用 astype() 函数 将 pandas 数据列转换为不同类型的最简单方法是使用 astype(),例如...,让我们尝试对 2016 列做同样的事情,并将其转换为浮点数: 同样的,转换 Jan Units 列 转换异常了~ 上面的情况中,数据中包含了无法转换为数字的值。...将数值转换为字符串对象 如果数据有非数字字符或者不是同质的,那么 astype() 将不是类型转换的好选择。...python 的字符串函数去除“$”和“,”,然后将值转换为浮点数 也许有人会建议使用 Decimal 类型的货币。

    2.5K20

    详解python中的pandas.read_csv()函数

    本文中洲洲将进行详细介绍pandas.read_csv()函数的使用方法。 一、Pandas库简介 pandas是一个Python包,并且它提供快速,灵活和富有表现力的数据结构。...df = pd.read_csv('data.csv', usecols=['Name', 'Occupation']) 3.3 处理缺失的数据 CSV文件中可能包含缺失数据,pandas.read_csv...将空字符串替换为NA df = df.dropna() # 删除包含NA的行 3.4 读取大文件 对于大文件,可以使用chunksize参数分块读取: chunk_size = 1000 # 每块1000...数据类型转换:在读取数据时,Pandas可能无法自动识别数据类型,这时可以通过dtype参数指定。 性能考虑:对于非常大的CSV文件,考虑使用分块读取或优化数据处理流程以提高性能。...日期时间列:如果CSV文件包含日期时间数据,可以使用parse_dates参数将列解析为Pandas的datetime类型。

    48610
    领券