首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

使用深度学习和OpenCV的早期火灾探测系统

这是因为已对其进行训练的数据集。数据集中几乎没有图像可以教授室内火灾的模型。因此该模型仅知道室外着火情况,因此在获得室内类似火灾的阴影图像时会出错。...已经在该数据集中训练了以前的CNN模型,结果是它过拟合,因为它无法处理这个相对较大的数据集,无法从图像中学习复杂的特征。 开始为自定义的InceptionV3创建ImageDataGenerator。...数据集包含3个类,但对于本文,将仅使用2个类。它包含用于训练的1800张图像和用于验证的200张图像。另外添加了8张客厅图像,以在数据集中添加一些噪点。...如果框架中包含火焰,希望将该框架的颜色更改为B&W。...其中,火灾是最危险的异常事件,因为早期无法控制火灾可能会导致巨大的灾难,并造成人员,生态和经济损失。受CNN巨大潜力的启发,可以在早期阶段从图像或视频中检测到火灾。

1.1K10

使用深度学习和OpenCV的早期火灾检测系统

我们已经在该数据集中训练了我们之前的CNN模型,结果表明它是过拟合的,因为它无法处理这个相对较大的数据集和从图像中学习复杂的特征。...另外,我添加了8张客厅图像,以在数据集中添加一些噪点。...来自下面引用的数据集中的非火灾图像 实时测试 现在,我们的模型已准备好在实际场景中进行测试。以下是使用OpenCV访问我们的网络摄像头并预测每帧图像中是否包含火的示例代码。...如果框架中包含火焰,我们希望将该框架的颜色更改为B&W。...其中,火灾是最危险的异常事件,因为在早期阶段无法控制火灾会导致巨大的灾难,从而造成人员,生态和经济损失。受CNN巨大潜力的启发,我们可以在早期阶段从图像或视频中检测到火灾。

1.6K11
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    基于卷积神经网络CNN的图像分类

    基于卷积神经网络CNN的图像分类+基于Tkinter自制GUI界面点击分类 大家好,我是Peter~ 本文主要包含两个方向的内容: 如何使用卷积神经网路对一份数据进行cats和dogs的分类:图像数据生成...image_Channels=3 # 通道数 生成图像数据 基于ImageDataGenerator生成训练集和验证集中的图片数据: train_datagen = ImageDataGenerator...model.save("model_cats_dogs_10category.h5") 模型预测 对测试集中的图像进行预测 predict = model.predict(test_generator,...导入模型 导入搭建好的CNN模型的h5文件: # 导入训练好的模型 model = load_model("model_cats_dogs_10category.h5") 图像窗口初始化 GUI界面的窗口参数初始化...uploaded = Image.open(file_path) # 打开图片,PIL类型;pytorch的顺序:(batch,c,h,w) tf和numpy是(batch,h,w

    1.4K20

    基于深度学习的面部表情识别系统

    当提供的数据越多,网络可以逐步进行微调,直至损失最小。看起来好像我们设置的网络节点越多,模型的表达能力就会越好,但这也同时会导致训练数据容易陷入过拟合状态。...这个数据集中大约包含36000张大小为48*48像素的灰度图像,并且都已自动调整过,基本每张人脸在图像中的位置和所占比例都差不多。...原始数据由图像每个像素灰度值的数组数据组成,我们将数据转换为原始图像并将其拆分放进多个子文件中。其中,80%的数据放进训练集中,剩余20%的数据用于测试。...训练集中共有28821张表情图片;验证集中共有7066张表情图片。值得一提的是,此处还可以在获取图像时执行数据增强(比如随机旋转和尺度缩放等)。...: 1) 从网络摄像头获取图像流 2) 使用OpenCV检测并框出人脸 3) 从我们的CNN网络获取预测结果并将预测标签添加到网络摄像头的图像流中 4) 返回处理后的图像流 import cv2 from

    7.7K41

    用AI训练AI:制作一个简单的猫狗识别模型

    ,于是乎找到一个包含三万多张图片的数据集:https://www.heywhale.com/mw/dataset/5d11bb1a38dc33002bd6f1f1在下载到的数据集中,有一个 train.zip...这里,我将给出一个使用TensorFlow和Keras进行分类的简单示例。这个例子将会展示如何加载数据、构建一个简单的卷积神经网络(CNN)模型进行训练,以及如何测试模型。...模块的一部分,用于实时地生成批量图像数据# 这个类通过在训练过程中对图像进行实时的数据增强来提高模型的泛化能力。...20% 作为验证集# flow_from_directory 是 ImageDataGenerator 类的一个方法,它用于从文件夹路径中直接加载图像,并将它们作为深度学习模型的输入# 这个方法非常适合处理文件夹中按类别组织的图像数据...为训练和验证数据设置了不同的参数,包括图像大小、批次大小、类别模式及数据子集类型 target_size=(150, 150), # 调整图片大小为150x150 batch_size

    1.3K62

    基于CNN的店铺LOGO识别

    鉴于我们稍后希望将这一技术应用到twitter微博中的任意图像以分类标牌,因此我们使用了Wild数据集,其中包含11052个包含大标牌的图像。...不过我们没有直接从官网下载这个数据集,而是从QMUL-OpenLogo数据集中提取了9428个图像。...在这里我们的输入是数据的特征,例如图像中每个像素的RGB值。输出节点对应数据集中的可能的LOGO分类。不同节点之间的连接有不同的权重,这对应不同的重要性。...并且,由于输入节点被排列为一维向量,神经网络也无法获知图像的任何局部模式。这些问题促成了卷积神经网络的诞生: ?...考虑到我们要识别图像中的小LOGO,CNN的另一个优势就是其具有位移不变性,也就是说,CNN可以识别出图像中任何区域的LOGO。

    1.1K30

    使用Python实现深度学习模型:智能野生动物保护与监测

    数据准备为了训练我们的深度学习模型,需要收集大量的动物图像数据。这些数据可以通过野外摄像头获取,或者从公开的动物图像数据集中获取。假设我们已经有一份包含动物图像和标签的数据集。...数据预处理在进行模型训练之前,需要对图像数据进行预处理。包括图像的读取、尺寸调整和归一化处理。...构建深度学习模型我们将使用Keras构建一个卷积神经网络(CNN)模型,用于动物图像的分类。...# 加载模型model = tf.keras.models.load_model('wildlife_model.h5')# 评估模型loss, accuracy = model.evaluate(test_generator...实时监测与保护在实际应用中,训练好的模型可以用于实时监测野生动物。将新的动物图像输入模型,即可得到动物种类的预测结果,并根据预测结果采取相应的保护措施。

    16511

    在TensorFlow 2中实现完全卷积网络(FCN)

    在本教程中,将执行以下步骤: 使用Keras在TensorFlow中构建完全卷积网络(FCN) 下载并拆分样本数据集 在Keras中创建生成器以加载和处理内存中的一批数据 训练具有可变批次尺寸的网络 使用...如果输入图像的尺寸太小,那么可能无法达到下一个卷积块所需的最小高度和宽度(应大于或等于内核尺寸)。...第三点不能一概而论,因为它取决于诸如数据集中的图像数量,使用的数据扩充,模型初始化等因素。但是这些是实验中的观察结果。...可以设置要复制到训练和验证集中的图像数量。 提供有关数据集的统计信息,例如图像的最小,平均和最大高度和宽度。...无法调整图像大小(因为我们将失去微观特征)。现在由于无法调整图像的大小,因此无法将其转换为成批的numpy数组。

    5.2K31

    用Keras+TensorFlow,实现ImageNet数据集日常对象的识别

    博客Deep Learning Sandbox作者Greg Chu打算通过一篇文章,教你用Keras和TensorFlow,实现对ImageNet数据集中日常物体的识别。...看看ILSVRC竞赛中包含的物体对象。如果你要研究的物体对象是该列表1001个对象中的一个,运气真好,可以获得大量该类别图像数据!...如果你研究的物体对象不在该列表中,或者像医学图像分析中具有多种差异较大的背景,遇到这些情况该怎么办?...许多CNN网络结构具有固定的输入大小,ResNet50正是其中之一,作者将输入大小定为(224,224)。 image.img_to_array:将PIL格式的图像转换为numpy数组。...这也就是说,我们可以一次性分类多个图像。 preprocess_input:使用训练数据集中的平均通道值对图像数据进行零值处理,即使得图像所有点的和为0。

    2K80

    拿来就能用!简单 Python 代码实现建筑识别

    卷积神经网络作为图像识别的首选算法,其对于图像的特征提取具有很好的效果,Keras 框架作为卷积神经网络的典型框架,可创建神经网络层,更容易提取图像特征,从而达到区分动物的目的,在生产实践中达到辅助的效果...实现效果如下图: 实验前的准备 Python版本是3.6.5;使用的神经网络是CNN;所用到的搭建网络层的库是Keras。...Keras 为支持快速实验而生,能够把你的idea迅速转换为结果,Keras的基本优点如下: 1、简易和快速的原型设计(keras具有高度模块化,极简,和可扩充特性) 2、支持CNN和RNN,或二者的结合...全连接层:通常在CNN的尾部进行重新拟合,减少特征信息的损失 输出层:用于输出结果 当然中间还可以使用一些其他的功能层: 归一化层(Batch Normalization):在CNN中对特征的归一化 切分层...( #设置测试集迭代器 TEST_PATH, #测试集存放路径 target_size=(IMG_W,IMG_H), #测试集图片尺寸 batch_size=BATCH_SIZE

    1.4K20

    基于OpenCV的棋盘图像识别

    自定义数据集的细分 为了构建该数据集,我首先创建了capture_data.py,当单击S键时,该视频从视频流中获取一帧并将其保存。...完整的棋盘检测过程 03. 棋盘分类 项目伊始,我们想使用Keras / TensorFlow创建CNN模型并对棋子进行分类。...但是,在创建数据集之后,仅考虑CNN的大小,单靠CNN就无法获得想要的结果。...任何大于10的数均不会使验证准确性的提高,也不会增加训练与验证准确性之间的差异。总结:转移学习使我们可以充分利用深度学习在图像分类中的优势,而无需大型数据集。 04....此应用程序保存实时视频流中的原始帧,每个正方形的64个裁剪图像以及棋盘的最终2D图像。 print('Working...

    7.4K20

    基于计算机视觉的棋盘图像识别

    自定义数据集的细分 为了构建该数据集,我首先创建了capture_data.py,当单击S键时,该视频从视频流中获取一帧并将其保存。...完整的棋盘检测过程 03. 棋盘分类 项目伊始,我们想使用Keras / TensorFlow创建CNN模型并对棋子进行分类。...但是,在创建数据集之后,仅考虑CNN的大小,单靠CNN就无法获得想要的结果。...任何大于10的数均不会使验证准确性的提高,也不会增加训练与验证准确性之间的差异。总结:转移学习使我们可以充分利用深度学习在图像分类中的优势,而无需大型数据集。 04....此应用程序保存实时视频流中的原始帧,每个正方形的64个裁剪图像以及棋盘的最终2D图像。 print('Working...

    1.2K10

    使用神经网络为图像生成标题

    我们在这个任务中使用的数据集是流行的flickr 8k图像数据集,它是这个任务的基准数据,可以通过下面的链接访问。...,但有一个问题… 上面的模型太过简单,无法从我们的一组图像中提取出每一个重要的细节,因此会影响整个模型的性能。...在我们的例子中,由于标题可以是可变长度的,所以我们首先需要指定每个标题的开始和结束。我们看看-是什么意思 ? 首先,我们将把和添加到数据集中的每个标题中。...在创建最终词汇表之前,我们将对训练数据集中的每个标题进行标记。为了训练我们的模型,我们将从词汇表中删除频率小于或等于10的单词。增加这一步是为了提高我们的模型的一般性能,并防止它过拟合训练数据集。...最大标题长度:因为在我们的数据集中,即使对于相同的图像,标题也是可变长度的。让我们试着更详细地理解这个 ? 正如您所看到的,每个标题都有不同的长度,因此我们不能将它们用作我们的LSTM模型的输入。

    1.1K20

    一个超强算法模型,CNN !!

    每个图像都与一个0到9的数字标签相关联,表示图像中包含的手写数字。 这个数据集是一个非常适合用于图像分类任务的基准数据集。...CNN通过学习图像中的局部模式(如边缘和纹理)逐渐构建出更复杂的图像特征,使其在图像识别任务中表现出色。 多层感知器 (MLP):这是一种基本的前馈神经网络,由多个层次的全连接层组成。...虽然它不如 CNN 专门化,但对于 MNIST 这种相对简单的图像数据集而言,MLP 通常可以达到相当不错的效果。 支持向量机 (SVM):在深度学习兴起之前,SVM 是图像分类任务中的常用方法。...整个模型的训练目的是最小化损失函数,提高在未见数据上的准确性。...import keras model = keras.models.load_model('mnist_model.h5') # 加载并显示一个手写数字图像(可以自己手写一个数字图像,或从测试集中选取

    36110

    基于计算机视觉的棋盘图像识别

    自定义数据集的细分 为了构建该数据集,我首先创建了capture_data.py,当单击S键时,该视频从视频流中获取一帧并将其保存。...完整的棋盘检测过程 03. 棋盘分类 项目伊始,我们想使用Keras / TensorFlow创建CNN模型并对棋子进行分类。...但是,在创建数据集之后,仅考虑CNN的大小,单靠CNN就无法获得想要的结果。...任何大于10的数均不会使验证准确性的提高,也不会增加训练与验证准确性之间的差异。总结:转移学习使我们可以充分利用深度学习在图像分类中的优势,而无需大型数据集。 04....此应用程序保存实时视频流中的原始帧,每个正方形的64个裁剪图像以及棋盘的最终2D图像。 print('Working...

    71130

    深度学习第3天:CNN卷积神经网络

    介绍 卷积神经网络(Convolutional Neural Network,CNN)是一种深度学习模型,主要用于处理和识别具有网格结构的数据,如图像和视频。...CNN在计算机视觉领域取得了巨大的成功,广泛应用于图像分类、目标检测、人脸识别等任务。...CNN的主要结构 CNN的主要结构其实就三个部分,卷积层,激励层,池化层,我们接下来主要介绍这三个部分 卷积层 卷积层中核心的东西叫做滤波器,他是一个有形状的矩阵,滤波器的作用是提取图片的特征,...(2x2) 最大池化 最大池化就是取区域中的最大值 ​ 这幅图中池化层的大小也是(2x2) Kears搭建CNN 搭建代码 以下是使用Keras搭建CNN的代码 # 导入必要的库 from keras.layers...(img_array, axis=0) 导入图片 将图片格式转化为224x224 获取图片矩阵 归一化, 归一化不会改变原本的图像像素比例,目的是使模型训练过程中更容易收敛 拓展维度以适应Keras模型的输入要求

    23410

    Deep learning with Python 学习笔记(2)

    本节介绍基于Keras的CNN 卷积神经网络接收形状为 (image_height, image_width, image_channels)的输入张量(不包括批量维度),宽度和高度两个维度的尺寸通常会随着网络加深而变小...这既可以增大网络容量,也可以进一步减小特征图的尺寸,使其在连接 Flatten 层时尺寸不会太大 在向网络中输入数据时,我们首先需要将数据进行预处理,将其格式化为浮点数张量,JPEG数据处理步骤如下 读取图像...,需要指定validation_steps参数,来说明需要从验证生成器中抽取多少个批次用于评估 Keras保存模型 model.save('\*\*\*.h5') 一个使用CNN的猫狗分类Demo 数据集下载...这让模型能够观察到数据的更多内容,从而具有更好的泛化能力 在 Keras 中,这可以通过对 ImageDataGenerator 实例读取的图像执行多次随机变换来实现 Demo from keras.preprocessing.image...Keras向网络中添加dropout model.add(layers.Dropout(0.5)) 通过使用数据增强,正则化以及调节网络参数可以在一定程度上提高精度,但是因为数据较少,想要进一步提高精度就需要使用预训练的模型

    69110

    10分钟搭建你的第一个图像识别模型 | 附完整代码

    既然我们已经掌握了主题,那么让我们来深入研究一下如何构建图像分类模型,它的先决条件是什么,以及如何在Python中实现它。 02 设置图像数据结构 我们的数据集需要特殊的结构来解决图像分类问题。...训练集的文件夹里放一个csv文件和一个图像文件夹: csv文件存储所有训练图片的图片名和它们对应的真实标签 图像文件夹存储所有的训练图片 测试集文件夹中的csv文件和训练集文件夹中的csv文件不同,测试集文件夹中的...因为我们要通过训练训练集中的图片来对测试集中的图片进行预测。 如果你的数据集不是这样的格式,你需要进行转换,否则的话预测结果可能有错误。...加载和预处理数据,所需时间:大约2-3分钟 就深度学习模型而言,数据非常关键。如果训练集中有大量的图像,你的图像分类模型也会有更大的可能实现更好的分类效果。...此外,根据所用的框架不同,数据的维度不同,效果也不一样。

    25.6K86
    领券