首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

数据科学】统计算法在Kaggle数据科学竞赛成功

这次成功充分说明了Donaho博士在数据科学方面的创造力,聪明和灵敏性。在统计视图网站的独家采访中,Donaho博士讨论了他在数据科学方面的兴趣和Kaggle比赛的成功。 ?...1.通过Kaggle比赛,你认为最有用的统计机器学习算法是什么?对于你自己而言,通过使用这些特定的方法,最大的收获是什么?...之前,我开始使用XGBoost算法,它在本质上是类似于GBM算法的,但是计算要更快一些,而且对功能进行了一定的改进。而最近,我也被数字运营商举办的在线学习算法比赛所吸引。...我通常在比赛的开始花相当多的时间只是筛选数据,并且在我应用任何学习算法之前深入了解它。 有时这会给我创造一个很好的竞争优势——例如在好事达的比赛中,我发现某些组合的产品永远不会发生在美国各州。...如果我看到选手赢得比赛用的是我之前并没有使用过的算法,我就要强迫我自己学习这种算法,以保持竞争力。这就是我开始使用XGBoost算法的原因。 第三,它是数据科学家们分享想法的一个社区。

98850
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    数据挖掘十算法--K近邻算法

    逼近离散值函数f: Ân_V的k-近邻算法 训练算法: 对于每个训练样例,把这个样例加入列表training_examples分类算法: 给定一个要分类的查询实例xq 在training_examples...1-近邻算法把xq分类为正例,然而5-近邻算法把xq分类为反例。 右图是对于一个典型的训练样例集合1-近邻算法导致的决策面。...三、距离加权最近邻算法 对k-近邻算法的一个显而易见的改进是对k个近邻的贡献加权,根据它们相对查询点xq的距离,将较大的权值赋给较近的近邻。...四、对k-近邻算法的说明 按距离加权的k-近邻算法是一种非常有效的归纳推理方法。它对训练数据中的噪声有很好的鲁棒性,而且当给定足够大的训练集合时它也非常有效。...python版本: 这里实现一个手写识别算法,这里只简单识别0~9熟悉,在上篇文章中也展示了手写识别的应用,可以参考:机器学习与数据挖掘-logistic回归及手写识别实例的实现 输入:每个手写数字已经事先处理成

    1.1K50

    关于SSL证书10统计数据

    十年前,只有大公司和购物网站会使用SSL证书进行加密传输数据,而如今,所有网站都必须进行加密,无论网站类型和大小。随着越来越多的用户在网上分享敏感数据,因此,保护这些数据不被窃取变得至关重要。...为了更好地查看 HTTPS 的普及情况,我们可以通过SSL 证书的10 项统计数据来了解。 stats-about-SSL-certificates.jpg 1....已有1.57亿张SSL证书应用于互联网 根据BuiltWith的数据,截至2021年2月18日,检测到在互联网上已有超过157,605,195亿张SSL证书,这几乎是去年的两倍。...5. 59.4%的网站未遵循最佳安全实践 根据SSL Pulse统计,一个用于监控Alexa排名前15万的最受欢迎网站的SSL/TLS质量的控制面板显示,其中有59.4%的网站未遵循SSL部署最佳安全实践...7. 74%的钓鱼网站使用 HTTPS 根据反网络钓鱼工作组(APWG) 的数据显示,2019 年有74%的钓鱼网站使用HTTPS证书实现了安全锁。

    92000

    数据挖掘10算法详细介绍

    想初步了解下怎样数据挖掘,看到一篇不错的文章转载过来啦~ 转自:http://blog.jobbole.com/89037/ 在一份调查问卷中,三个独立专家小组投票选出的十最有影响力的数据挖掘算法...只有这样之后 SVM 才有能力对新数据进行分类。 为什么我们要用 SVM 呢? SVM 和 C4.5体上都是优先尝试的二类分类器。...在统计学上,当估算带有无法观测隐藏变量的统计模型参数时,EM 算法不断迭代和优化可以观测数据的似然估计值。...好,稍等让我解释一下… 我不是一个统计学家,所以希望我的简洁表达能正确并能帮助理解。 下面是一些概念,能帮我们更好的理解问题。 什么事统计模型?我把模型看做是描述观测数据是如何生成的。...再说一次,当估算带有无法观测隐藏变量的统计模型参数时,EM 算法不断迭代和优化可以观测数据的似然估计值。 希望现在再说更容易理解了。

    1.9K40

    统计学 常用的数据分析方法总结!

    一、描述统计 描述统计是通过图表或数学方法,对数据资料进行整理、分析,并对数据的分布状态、数字特征和随机变量之间关系进行估计和描述的方法。...描述统计分为集中趋势分析和离中趋势分析和相关分析三部分。 集中趋势分析 集中趋势分析主要靠平均数、中数、众数等统计指标来表示数据的集中趋势。例如被试的平均成绩多少?是正偏分布还是负偏分布?...这种关系既包括两个数据之间的单一相关关系——如年龄与个人领域空间之间的关系,也包括多个数据之间的多重相关关系——如年龄、抑郁症发生率、个人领域空间之间的关系;既包括AB就(小),A小B就小()的直线相关关系...而且聚类能够作为一个独立的工具获得数据的分布状况,观察每一簇数据的特征,集中对特定的聚簇集合作进一步地分析。聚类分析还可以作为其他算法(如分类和定性归纳算法)的预处理步骤。...缺点:对连续性的字段比较难预测;对有时间顺序的数据,需要很多预处理的工作;当类别太多时,错误可能就会增加的比较快;一般的算法分类的时候,只是根据一个字段来分类。

    18.4K63

    数据挖掘十经典算法

    数据挖掘十经典算法 一、 C4.5 C4.5算法是机器学习算法中的一种分类决策树算法,其核心算法是ID3 算法....四、数据挖掘十经典算法(4)Apriori Apriori算法是种最有影响的挖掘布尔关联规则频繁项集的算法。它的核心是基于两阶段频集思想的递推算法。该关联规则在分类上属于单维、单层、布尔关联规则。...在Apriori算法中,寻找最大项目集(频繁项集)的基本思想是:算法需要对数据集进行多步处理。第一步,简单统计所有含一个元素项目集出现的频数,并找出那些不小于最小支持度的项目集,即一维最大项目集。...五、数据挖掘十经典算法(5) EM 最大期望算法(Expectation-maximization algorithm,又译期望最大化算法)在统计中被用于寻找,依赖于不可观察的隐性变量的概率模型中...八、数据挖掘十经典算法(8) kNN 1、K最近邻(k-Nearest Neighbor,KNN)分类算法,是一个理论上比较成熟的方法,也是最简单的机器学习算法之一。

    1.1K50

    10数据挖掘算法及其简介

    这是一种非常受欢迎的用于研究数据集的聚类分析技术。 聚类分析是一组用于形成群体的算法家族,这些算法的组成员更相似。集群和组是聚类分析的同义词。 例如,假设我们有一个患者数据集。...4.Apriori Apriori算法学习关联规则,并应用于包含大量事务的数据库。 关联规则学习是一种数据挖掘技术,用于学习数据库中变量之间的相互关系和关系。 例如,假设我们有一个超市交易数据库。...在统计数据中,EM算法迭代并优化了查看观测数据的可能性,同时评估未观测变量的统计模型参数。...7.AdaBoost AdaBoost是一种构造分类器的增强算法。 你可能知道,分类器需要大量的数据,并试图预测或分类一个新的数据元素属于哪个类。...9.Naive Bayes Naive Bayes并不是一个单一的算法,而是一个分类算法的家族,他们有一个共同的假设: 被分类的数据的每一个特征都是独立于所有其他特性的。

    1K130

    10数据挖掘算法及其简介

    这是一种非常受欢迎的用于研究数据集的聚类分析技术。 聚类分析是一组用于形成群体的算法家族,这些算法的组成员更相似。集群和组是聚类分析的同义词。 例如,假设我们有一个患者数据集。...4.Apriori Apriori算法学习关联规则,并应用于包含大量事务的数据库。 关联规则学习是一种数据挖掘技术,用于学习数据库中变量之间的相互关系和关系。 例如,假设我们有一个超市交易数据库。...在统计数据中,EM算法迭代并优化了查看观测数据的可能性,同时评估未观测变量的统计模型参数。...7.AdaBoost AdaBoost是一种构造分类器的增强算法。 你可能知道,分类器需要大量的数据,并试图预测或分类一个新的数据元素属于哪个类。...9.Naive Bayes Naive Bayes并不是一个单一的算法,而是一个分类算法的家族,他们有一个共同的假设: 被分类的数据的每一个特征都是独立于所有其他特性的。

    91770

    数据下的高级算法:hyperloglog,统计海量数据下不同元素的个数

    上一节我们使用min-count-sketch 算法统计了海量数据下给定元素的重复次数,而hyperloglog正好反过来,它统计整个数据集中不同元素的个数。...跟上一节类似,大数据场景下算法都遵循一个套路,那就是拿准确度换取内存节省,内存省的越多,准确度就会相应下降,通常情况下算法会把原来用几十个G的内存降到几M,同时准确度控制在99%左右,在海量数据情形下,...上面这种做法问题在于,我们还是要把所有结果存储下来,如果L的值比集合中元素所需存储空间还要的话,那么算法反而需要更大空间,因此我们需要对其进行优化,下面我们介绍一种优化方法叫概率计数,它的原理为:在获得哈希结果后...从数理统计上看,在乘以参数a(m)后,错误率在1/sqrt(m) ,当b=14时,这个值在1%左右。...从当前算法看内存占据主要在“桶”上,如果我们设置一个桶的大小在8字节,那么桶的数量设置在2 ^ 14 时,内存需要130kb左右,而且算法不管你要处理的数据量是多大,错误率都可以保持不变。

    57430

    Pandas | 数据统计

    前言 本次我们介绍Pandas数据统计函数,如针对数值类型的统计(获取样本个数、平均值、标准差、极值等);针对非数值类型的统计(获取每个类型的个数)以及计算相关系数和协方差。 本文框架 0....读取数据数据预处理 2. 汇总类统计 3. 获取唯一值与按值计数 4. 相关系数与协方差 0. 导入Pandas import pandas as pd 1....读取数据数据预处理 # 读取数据 data = pd.read_csv("....汇总类统计 针对数值列,我们可以使用"df.describe()"将统计结果计算出来,返回结果有个数(count)、平均数(mean)、标准差(std)、最小值(min)、最大值(max)以及分位数(25%...# 数据统计 data.describe() # 返回结果 bWendu yWendu aqi aqiLevel count 365.000000

    76410

    终于有人把数据、信息、算法统计、概率和数据挖掘都讲明白了!

    昨天巴西队赢了”这句话是否能够被算作信息,我们都要表示怀疑,因为这也有点“废话”的意味——但凡对足球运动有点认识的人这几乎可以认定,即便你不告诉我昨天巴西队赢了,我也能猜个八九不离十,因为可能性实在是太大太大了,到几乎是一定的...04 统计、概率和数据挖掘 统计、概率、数据挖掘,这几个词经常伴随出现,尤其是统计和概率两个概念,几乎就像自然界的伴生矿一样分不了家,有很多出版社都出版过叫做《概率统计》的书籍。...我们这本书本身也不准备从学术的角度给统计和概率做严格的区分,在平时工作中我们用的统计大多为计数功能,例如我们在使用EXCEL中也会用到COUNT、SUM、AVERAGE等这些统计函数;如果是在软件开发的朋友在用...可以说,商业智能是一个具体的的应用领域,也是数据挖掘和机器学习应用的一个天然亲密的场景。...延伸阅读《白话大数据与机器学习》 转载请联系微信:togo-maruko 点击文末右下角“写留言”发表你的观点 推荐语:以降低学习曲线和阅读难度为宗旨,重点讲解了统计学、数据挖掘算法、实际应用案例、数据价值与变现

    69930

    数据挖掘】详细解释数据挖掘中的 10 算法(上)

    在一份调查问卷中,三个独立专家小组投票选出的十最有影响力的数据挖掘算法,今天我打算用简单的语言来解释一下。...只有这样之后 SVM 才有能力对新数据进行分类。 为什么我们要用 SVM 呢? SVM 和 C4.5体上都是优先尝试的二类分类器。根据“没有免费午餐原理”,没有哪一种分类器在所有情况下都是最好的。...第三是根据你已经统计的项集中某些数据项,计算其他某个数据项出现的信心水准或是条件概率。例如项集中出现的薯片的话,有67%的信心水准这个项集中也会出现苏打水。...在统计学上,当估算带有无法观测隐藏变量的统计模型参数时,EM 算法不断迭代和优化可以观测数据的似然估计值。 好,稍等让我解释一下… 我不是一个统计学家,所以希望我的简洁表达能正确并能帮助理解。...再说一次,当估算带有无法观测隐藏变量的统计模型参数时,EM 算法不断迭代和优化可以观测数据的似然估计值。 希望现在再说更容易理解了。

    1.2K51

    数据挖掘】详细解释数据挖掘中的 10 算法(下)

    举个 AdaBoost 算法的例子:我们开始有3个弱学习器,我们将在一个包含病人数据数据训练集上对他们做10轮训练。数据集里包含了病人的医疗记录各个细节。...和存储训练数据算法不同,懒散学习法在训练过程中不需要做许多处理。只有当新的未被分类的数据输入时,这类算法才会去做分类。...Thomas Bayes 是一个英国统计学家,贝叶斯定理就是以他名字命名的。...第四步:计算其他类时也做类似的计算: 因为0.252于0.01875,Naive Bayes 会把长形,甜的还是黄色水果分到香蕉的一类中。 这是个监督算法还是非监督算法呢?...最后,基于斯坦福和加州大学伯克利分校的世界闻名的统计学家们的理论,只有 Salford系统有最原始的 CART 专利源码的实现部分。

    1.4K60

    数据的误区:数据统计≠大数据

    “新处理模式”是一个很关键的词汇,这也是我所理解的“大数据”区别于传统统计分析等最关键的特征之一。...数据统计是已经发生的事情,而大数据往往被用于还没有发生的事情预测或者推荐中。 预测和推荐是如何实现的 目前主要的推荐算法大致可以分为两类。一个是基于行为,一个是基于内容。...图2、出租车每天的分布图 这也是我眼中大数据主要与普通的数据统计分析最大的不同:数据统计可以帮助你发现疾病,但大数据可以不但帮助你发现,且帮助你治疗疾病。...大数据在有些领域由于种种原因,所带来的价值并不如预期的那么高。导致这种现象最主要的问题有两个,一个是由于数据本身的质量或者数量不够;另一个是算法不合适。...如今,行业内不少人打着“数据统计和分析”的旗号来做大数据,让很多外行人陷入了误区:数据统计并非等于大数据。无论数据统计也好,大数据也罢,其实都是为了使我们的工作变得更为有效,让决策更为理性而准确。

    67220

    数据挖掘十算法(四):Apriori(关联分析算法

    终于到了机器学习实战的第十一章了,这也是继K-均值后的第二个无监督学习算法了。...同样的该算法也是在一堆数据集中寻找数据之间的某种关联,这里主要介绍的是叫做Apriori的‘一个先验’算法,通过该算法我们可以对数据集做关联分析——在大规模的数据中寻找有趣关系的任务,本文主要介绍使用Apriori...算法发现数据的(频繁项集、关联规则)。...有了可以量化的计算方式,我们却还不能立刻运算,这是因为如果我们直接运算所有的数据,运算量极其的,很难实现,这里说明一下,假设我们只有 4 种商品:商品0,商品1,商品 2,商品3....例如,对于上图,要计算 0,3 的支持度,直接的想法是遍历每条记录,统计包含有 0 和 3 的记录的数量,使用该数量除以总记录数,就可以得到支持度。而这只是针对单个集合 0,3.

    1.9K20

    数据的误区:数据统计≠大数据

    “新处理模式”是一个很关键的词汇,这也是我所理解的“大数据”区别于传统统计分析等最关键的特征之一。...数据统计是已经发生的事情,而大数据往往被用于还没有发生的事情预测或者推荐中。 预测和推荐是如何实现的 目前主要的推荐算法大致可以分为两类。一个是基于行为,一个是基于内容。...图2、出租车每天的分布图 这也是我眼中大数据主要与普通的数据统计分析最大的不同:数据统计可以帮助你发现疾病,但大数据可以不但帮助你发现,且帮助你治疗疾病。...大数据在有些领域由于种种原因,所带来的价值并不如预期的那么高。导致这种现象最主要的问题有两个,一个是由于数据本身的质量或者数量不够;另一个是算法不合适。...如今,行业内不少人打着“数据统计和分析”的旗号来做大数据,让很多外行人陷入了误区:数据统计并非等于大数据。无论数据统计也好,大数据也罢,其实都是为了使我们的工作变得更为有效,让决策更为理性而准确。

    56220
    领券