首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    人才盘点中的数据相关性分析

    我们在做人力资源各项工作的目的都是为了可以支持业务的绩效,提升业务的绩效,不管是在招聘,培训,绩效等工作,但是在人力资源的工作中,我们很难直接的去和业务的绩效相关联,都是间接的支持业务的相关绩效,所以在人力资源的工作中我们一直在探索如何找出和有业务最相关的一些因素。 我们从人才发展和能力维度来分析如何通过数据分析的方法来找出业务业绩最相关的那个能力。 要做这个分析首先需要了解的一个概念就是“数据相关性”,所谓的数据相关性是两个变量之间的数据关系,这个数据关系分为两种正相关:Y数据随着X数据的增大而增大,系数K 是个正值负相关:Y 数据随着X的增大而减小,系数K是个负值

    03

    单细胞转录组可以这样简单计算相关性吗

    各种数据挖掘文章本质上都是要把目标基因集缩小,比如表达量矩阵通常是2万多个蛋白编码基因,不管是表达芯片还是RNA-seq测序的,采用何种程度的差异分析,最后都还有成百上千个目标基因。如果是临床队列,通常是会跟生存分析进行交集,或者多个数据集差异结果的交集,比如:多个数据集整合神器-RobustRankAggreg包 ,这样的基因集就是100个以内的数量了,但是仍然有缩小的空间,比如lasso等统计学算法,最后搞成10个左右的基因组成signature即可顺利发表。其实还有另外一个策略方向,有点类似于人工选择啦,通常是可以往热点靠,比如肿瘤免疫,相当于你不需要全部的两万多个基因的表达量矩阵进行后续分析,仅仅是拿着几千个免疫相关基因的表达矩阵即可。最近比较热门的有:自噬基因,铁死亡,EMT基因,核受体基因家族,代谢基因。还有一个最搞笑的是m6a基因的策略,完全是无厘头的基因集搞小,纯粹是为了搞小而搞小。目前单细胞转录组大行其道,所以很多人喜欢使用公共的单细胞转录组数据集来缩小基因范围。学员在微信交流群分享了一个2024年5月的单细胞数据挖掘文章,标题是:《Single-cell combined with transcriptome sequencing to explore the molecular mechanism of cell communication in idiopathic pulmonary fibrosis》,研究者们重新分析了 GSE122960 这个单细胞转录组数据集,主要是第一层次降维聚类分群后,提取了巨噬细胞的特异性基因,然后走了随机森林生存分析算法,得到了 five most related key genes (CD163, IFITM2, IGSF6, S100A14 and SOD3). 有了目标的5个基因就可以很方便的各种简单分析来强调他们的生物学意义。比如去跟PDCD1基因看相关性:

    01

    Biological Psychiatry综述:人脑成像转录组学的最佳实践

    现代全脑转录图谱为研究脑组织的分子相关性提供了前所未有的机会,可以使用无创神经成像进行量化。然而,将神经影像学数据与转录组测量相结合并不是直截了当的,需要仔细考虑才能做出有效的推断。在本文中,我们回顾了最近的研究工作,探讨了不同的方法选择如何影响成像转录组学分析的三个主要阶段,包括1)转录图谱数据的处理;2)将转录测量与独立衍生的神经影像学表型相关联;3)通过基因富集分析评估鉴定的关联的功能意义。我们的目标是为这个快速发展的领域促进标准化和可复制方法的发展。我们确定了方法可变性的来源,可能影响结果的关键选择,以及减轻假阳性和/或虚假结果的考虑因素。最后,我们提供了在所有3个分析阶段实现当前最佳实践过程的免费可用的开源工具箱的概述。

    01

    MP:精神疾病患者和正常发育人群皮层特征的共同模式

    发育和精神病理学之间关系的神经生物学基础仍然不清楚。在这里,我们确定了一个在正常发育和一些精神神经疾病中共同的皮层厚度(CT)空间模式。主成分分析(PCA)被应用于Desikan-Killiany模板中的68个区域的CT,这些区域来自三个大规模的数据集,一共包括41,075个神经正常发育被试。PCA产生了一个大范围的主要空间主成分(PC1),并且这个结果是跨数据集可重复的。然后在一个包括14886名精神疾病患者和20962名健康对照组的7个ENIGMA疾病相关数据集中,健康成人被试的PC1与精神与神经疾病患者的CT差异模式进行了比较,正常成熟和衰老的被试来自于ABCD研究和IMAGEN发展研究的总共17697扫描,和ENIGMA寿命工作组的17075名被。同时还包含了艾伦人类脑图谱的基因表达数据。结果显示,PC1模式与在许多精神疾病中观察到的较低的CT之间存在显著的空间对应关系。此外,PC1模式也与正常成熟和衰老的空间分布模式相关。转录分析发现了一组包括KCNA2、KCNS1和KCNS2在内的基因,其表达模式与PC1的空间模式密切相关。基因富集分析表明,PC1的转录相关富集到多个基因本体类别,并从儿童后期开始,与青春期前到青春期的过渡过程中显著的皮层成熟和精神病理的出现相一致。总的来说,本研究报告了一种可重复的CT潜在模式,该模式捕获了正常大脑成熟和精神疾病谱系中皮层变化的区域间特征。PC1相关基因表达的青春期富集暗示了在青春期出现的精神疾病谱系的发病机制中神经发育的中断。

    01

    大脑年龄预测:机器学习工作流程的系统比较研究

    脑解剖扫描预测的年龄和实际年龄之间的差异,如脑年龄增量,为非典型性衰老提供了一个指示。机器学习 (ML) 算法已被用于大脑年龄的估计,然而这些算法的性能,包括(1)数据集内的准确性,  (2)跨数据集的泛化,  (3)重新测试的可靠性,和(4)纵向一致性仍然没有确定可比较的标准。本研究评估了128个工作流程,其中包括来自灰质 (GM) 图像的16个特征和8个具有不同归纳偏差的ML算法。利用四个覆盖成人寿命的大型神经成像数据库进行分析 (总N=2953,18-88岁),显示了包含4.73—8.38年的数据集中平均绝对误差 (MAE ) ,其中32个广泛抽样的工作流显示了包含5.23—8.98年的交叉数据集的MAE。结果得到:前10个工作流程的重测信度和纵向一致性具有可比性。特征的选择和ML算法都影响了性能。具体来说,体素级特征空间 (平滑和重采样) ,有和没有主成分分析,非线性和基于核的ML算法表现良好。在数据集内和跨数据集内的预测之间,大脑年龄增量与行为测量的相关性不一致。在ADNI样本上应用表现最佳的工作流程显示,与健康对照组相比,阿尔茨海默病患者和轻度认知障碍患者的脑龄增量明显高于健康对照组。在存在年龄偏倚的情况下,患者的脑龄增量估计因用于偏倚校正的样本而不同。总之,大脑年龄具有一定应用前景,但还需要进一步的评估和改进。

    02
    领券