数据挖掘:What?Why?How? 磨刀不误砍柴工。在学习数据挖掘之前应该明白几点: 数据挖掘目前在中国的尚未流行开,犹如屠龙之技。 数据初期的准备通常占整个数据挖掘项目工作量的70%左右。 数据挖掘本身融合了统计学、数据库和机器学习等学科,并不是新的技术。 数据挖掘技术更适合业务人员学习(相比技术人员学习业务来的更高效) 数据挖掘适用于传统的BI(报表、OLAP等)无法支持的领域。 数据挖掘项目通常需要重复一些毫无技术含量的工作。 如果你阅读了以上内容觉得可以接受,那么继续往下看。 学习一门技术要和行业
问题:如何系统地学习数据挖掘? 虽然是本科毕业,但是在看数据挖掘方面的算法理论时经常感觉一些公式的推导过程如天书一般,例如看svm的数学证明,EM算法..,感觉知识跳跃比较大, 是我微积分学的不好还是
读者问:虽然是本科毕业,但是在看数据挖掘方面的算法理论时经常感觉一些公式的推导过程如天书一般,例如看svm的数学证明,EM算法..,感觉知识跳跃比较大, 是我微积分学的不好还是中间有什么好的教材补充一
看数据挖掘方面的算法理论时经常感觉一些公式的推导过程如天书一般,例如看svm的数学证明,EM算法..,感觉知识跳跃比较大,那么数据挖掘系统的学习过程是怎么样磨刀不误砍柴工。在学习数据挖掘之前应该明白几点: 数据挖掘目前在中国的尚未流行开,犹如屠龙之技。 数据初期的准备通常占整个数据挖掘项目工作量的70%左右。 数据挖掘本身融合了统计学、数据库和机器学习等学科,并不是新的技术。 数据挖掘技术更适合业务人员学习(相比技术人员学习业务来的更高效) 数据挖掘适用于传统的BI(报表、OLAP等)无法支持的领域
数据挖掘:What?Why?How? 这个问题思考了很久,作为过来人谈一谈,建议先看下以前的一些回答。 什么是数据挖掘? 怎么培养数据分析的能力? 如何成为一名数据科学家? 磨刀不误砍柴工。在学习数据
问题:如何系统地学习数据挖掘? 虽然是本科毕业,但是在看数据挖掘方面的算法理论时经常感觉一些公式的推导过程如天书一般,例如看svm的数学证明,EM算法..,感觉知识跳跃比较大, 是我微积分学的不好还是中间有什么好的教材补充一下,数据挖掘系统的学习过程是怎么样的,应该看那些书(中文最好)? 回答者:Han Hsiao 数据挖掘:What?Why?How? 这个问题思考了很久,作为过来人谈一谈,建议先看下以前的一些回答。 什么是数据挖掘? 怎么培养数据分析的能力? 如何成为一名数据科学家? 磨刀不误砍柴工。在学
1. 读书《Introduction to Data Mining》,这本书很浅显易懂,没有复杂高深的公式,很合适入门的人。另外可以用这本书做参考《Data Mining : Concepts and Techniques》。第二本比较厚,也多了一些数据仓库方面的知识。如果对算法比较喜欢,可以再阅读《Introduction to Machine Learning》。
新媒体管 基础篇: 1. 读书《Introduction to Data Mining》,这本书很浅显易懂,没有复杂高深的公式,很合适入门的人。另外可以用这本书做参考《Data Mining : Concepts and Techniques》。第二本比较厚,也多了一些数据仓库方面的知识。如果对算法比较喜欢,可以再阅读《Introduction to Machine Learning》。 2. 实现经典算法。有几个部分: a. 关联规则挖掘 (Apriori, FPTree, etc.) b. 分类 (C
问题:如何系统地学习数据挖掘? 虽然是本科毕业,但是在看数据挖掘方面的算法理论时经常感觉一些公式的推导过程如天书一般,例如看 svm 的数学证明,EM 算法..,感觉知识跳跃比较大, 是我微积分学的不
数据挖掘是利用业务知识从数据中发现和解释知识(或称为模式)的过程,这种知识是以自然或者人工形式创造的新知识。 当前的数据挖掘形式,是在20世纪90年代实践领域诞生的,是在集成数据挖掘算法平台发展的支撑下适合商业分析的一种形式。也许是因为数据挖掘源于实践而非理论,在其过程的理解上不太引人注意。20世纪90年代晚期发展的CRISP-DM,逐渐成为数据挖掘过程的一种标准化过程,被越来越多的数据挖掘实践者成功运用和遵循。 虽然CRISP-DM能够指导如何实施数据挖掘,但是它不能解释数据挖掘是什么或者
第一,目标律:业务目标是所有数据解决方案的源头 它定义了数据挖掘的主题:数据挖掘关注解决业务业问题和实现业务目标。数据挖掘主要不是一种技术,而是一个过程,业务目标是它的的核心。 没有业务目标,没有数据挖掘(不管这种表述是否清楚)。因此这个准则也可以说成:数据挖掘是业务过程。 第二,知识律:业务知识是数据挖掘过程每一步的核心 这里定义了数据挖掘过程的一个关键特征。CRISP-DM的一种朴素的解读是业务知识仅仅作用于数据挖掘过程开始的目标的定义与最后的结果的实施,这将错过数据挖掘过程的一个关键属性
数据挖掘是利用业务知识从数据中发现和解释知识(或称为模式)的过程,这种知识是以自然或者人工形式创造的新知识。 当前的数据挖掘形式,是在20世纪90年代实践领域诞生的,是在集成数据挖掘算法平台发展的支撑下适合商业分析的一种形式。也许是因为数据挖掘源于实践而非 理论,在其过程的理解上不太引人注意。20世纪90年代晚期发展的CRISP-DM,逐渐成为数据挖掘过程的一种标准化过程,被越来越多的数据挖掘实践者 成功运用和遵循。 虽然CRISP-DM能够指导如何实施数据挖掘,但是它不能解释数据挖掘是什么或者为什
1 您如何做数据挖掘? 数据挖掘是利用业务知识从数据中发现和解释知识(或称为模式)的过程,这种知识是以自然或者人工形式创造的新知识。 当前的数据挖掘形式,是在20世纪90年代实践领域诞生的,是在集成数据挖掘算法平台发展的支撑下适合商业分析的一种形式。也许是因为数据挖掘源于 实践而非理论,在其过程的理解上不太引人注意。20世纪90年代晚期发展的CRISP-DM,逐渐成为数据挖掘过程的一种标准化过程,被越来越多的数据挖 掘实践者成功运用和遵循。 虽然CRISP-DM能够指导如何实施数据挖掘,但是它不能解释数据挖
数据挖掘是利用业务知识从数据中发现和解释知识(或称为模式)的过程,这种知识是以自然或者人工形式创造的新知识。 当前的数据挖掘形式,是在20世纪90年代实践领域诞生的,是在集成数据挖掘算法平台发展的支撑下适合商业分析的一种形式。也许是因为数据挖掘源于实践而非 理论,在其过程的理解上不太引人注意。20世纪90年代晚期发展的CRISP-DM,逐渐成为数据挖掘过程的一种标准化过程,被越来越多的数据挖掘实践者 成功运用和遵循。 虽然CRISP-DM能够指导如何实施数据挖掘,但是它不能解释数据挖掘是什么或者为什么适合这
数据挖掘是利用业务知识从数据中发现和解释知识(或称为模式)的过程,这种知识是以自然或者人工形式创造的新知识。 当前的数据挖掘形式,是在20世纪90年代实践领域诞生的,是在集成数据挖掘算法平台发展的支撑下适合商业分析的一种形式。也许是因为数据挖掘源于 实践而非 理论,在其过程的理解上不太引人注意。20世纪90年代晚期发展的CRISP-DM,逐渐成为数据挖掘过程的一种标准化过程,被越来越多的数据挖掘实践者 成功运用和遵循。 虽然CRISP-DM能够指导如何实施数据挖掘,但是它不能解释数据挖掘是什么或者为什
数据建模指的是对现实世界各类数据的抽象组织,确定数据库需管辖的范围、数据的组织形式等直至转化成现实的数据库。将经过系统分析后抽象出来的概念模型转化为物理模型后,在visio或erwin等工具建立数据库实体以及各实体之间关系的过程。数据挖掘是利用业务知识从数据中发现和解释知识(或称为模式)的过程,这种知识是以自然或者人工形式创造的新知识。 当前的数据挖掘形式,是在20世纪90年代实践领域诞生的,是在集成数据挖掘算法平台发展的支撑下适合商业分析的一种形式。也许是因为数据挖掘源于实践而非 理论,在其过程的理解上不
曾几何时,我在一次面试中,面试官问,“数据挖掘和机器学习有什么区别?”,朋友们也可以思考下这个问题。
当前的数据挖掘形式,是在20世纪90年代实践领域诞生的,是在集成数据挖掘算法平台发展的支撑下适合商业分析的一种形式。也许是因为数据挖掘源于实践而非理论,在其过程的理解上不太引人注意。20世纪90年代晚期发展的CRISP-DM,逐渐成为数据挖掘过程的一种标准化过程,被越来越多的数据挖掘实践者 成功运用和遵循。 虽然CRISP-DM能够指导如何实施数据挖掘,但是它不能解释数据挖掘是什么或者为什么适合这样做。在本文中我将阐述我提出数据挖掘的九种准则或“定律”(其中大多数为实践者所熟知)以及另外其它一些熟知的解释。
数据挖掘是利用业务知识从数据中发现和解释知识(或称为模式)的过程,这种知识是以自然或者人工形式创造的新知识。 当前的数据挖掘形式,是在20世纪90年代实践领域诞生的,是在集成数据挖掘算法平台发展的支撑下适合商业分析的一种形式。也许是因为数据挖掘源于实践而非理论,在其过程的理解上不太引人注意。20世纪90年代晚期发展的CRISP-DM,逐渐成为数据挖掘过程的一种标准化过程,被越来越多的数据挖掘实践者成功运用和遵循。 虽然CRISP-DM能够指导如何实施数据挖掘,但是它不能解释数据挖掘是什么或者为什么适合这样做
前面对数据挖掘相关资源等等进行了总结。但是,很多人不明白学习数据挖掘以后干什么,这个问题也经常被问到。记得刚学数据挖掘的时候,有一个老师说学数据挖掘有什么用,你以后咋找工作。当时听了,觉得很诧异,不知道他为何有此一问。数据挖掘在国外是一份很不错的工作。我喜欢数据挖掘,因为它很有趣。很高兴以后就从事这方面的工作啦。写论文之余,也考虑一下数据挖掘工程师的职业规划。以下是从网上找的一些相关资料介绍,和即将走上数据挖掘岗位或是想想这方面发展的朋友共享: BI职业发展方向:数据分析师---商业分析师-
好吧,这样的定义方式比较抽象,但这也是业界认可度最高的一种解释了。对于如何开发一个大数据环境下完整的数据挖掘项目,业界至今仍没有统一的规范。说白了,大家都听说过大数据、数据挖掘等概念,然而真正能做而且做好的公司并不是很多。
什么是数据挖掘?要确定数据挖掘在不断增强的其他相似概念中的位置,还将学习这一学科成长和变化的历史。
大数据越来越火,数据挖掘师也水涨船高,更多的年轻人选择了这个行业,但是你了解他吗?面试的时候该如何表现呢? 数据挖掘领域是一个独特的行业,通常的招聘面试方法可能不大适用于本行业的特点。在招聘一个合格的数据挖掘工程师时,公司一般关注以下三个方面: ·他聪明吗?聪明意味着能透过复杂的信息建构问题并以正确的方式加以解决。聪明人还能从失败中获取经验。 ·他能否专注于项目?专注意味着在各种困难的环境内,仍能独立或合作完成项目。 ·他是否能与团队一起工作。团队合作需要很好的沟通能力,工作中涉及到的概念、问题、模型、结论
做数据挖掘也有些年头了,写这篇文一方面是让我写篇文,朋友作为数据挖掘方面的参考,另一方面也是有抛砖引玉之意,希望能够和一些大牛交流,相互促进,让大家见笑了。 Q&A: Q:学习,最近在看集体智慧编程,
大数据越来越火,数据挖掘师也水涨船高,更多的年轻人选择了这个行业,但是你了解他吗?面试的时候该如何表现呢? 数据挖掘领域是一个独特的行业,通常的招聘面试方法可能不大适用于本行业的特点。在招聘一个合格的数据挖掘工程师时,公司一般关注以下三个方面: 他聪明吗?聪明意味着能透过复杂的信息建构问题并以正确的方式加以解决。聪明人还能从失败中获取经验。 他能否专注于项目?专注意味着在各种困难的环境内,仍能独立或合作完成项目。 他是否能与团队一起工作?团队合作需要很好的沟通能力,工作中涉及到的概念、问
做数据挖掘也有些年头了,写这篇文一方面是写篇文,给有个朋友作为数据挖掘方面的参考,另一方面也是有抛砖引玉之意,希望能够和一些大牛交流,相互促进,让大家见笑了。 入门: 数据挖掘入门的书籍,中文的大体有这些: JiaweiHan的《数据挖掘概念与技术》 IanH.Witten/EibeFrank的《数据挖掘实用机器学习技术》 TomMitchell的《机器学习》 TOBYSEGARAN的《集体智慧编程》 AnandRajaraman的《大数据》 Pang-NingTan的《数据挖掘导论》 MatthewA.R
导读:很多人不明白学习数据挖掘以后干什么,这个问题也经常被问到。记得刚学数据挖掘的时候,有一个老师说学数据挖掘有什么用,你以后咋找工作。当时听了,觉得很诧异,不知道他为何有此一问。数据挖掘在国外是一份
很多人不明白学习数据挖掘以后干什么,这个问题也经常被问到。记得刚学数据挖掘的时候,有一个老师说学数据挖掘有什么用,你以后咋找工作。当时听了,觉得很诧异,不知道他为何有此一问。数据挖掘在国外是一份很不错的工作。我喜欢数据挖掘,因为它很有趣。很高兴以后就从事这方面的工作啦。写论文之余,也考虑一下数据挖掘工程师的职业规划。 以下是从网上找的一些相关资料介绍,和即将走上数据挖掘岗位或是想往这方面发展的朋友共享: 数据挖掘从业人员工作分析 1.数据挖掘从业人员的愿景: 数据挖掘就业的途径从我看来有以下几种,(注意:本
关键字全网搜索最新排名 【机器学习算法】:排名第一 【机器学习】:排名第一 【Python】:排名第三 【算法】:排名第四 关于数据挖掘 提到收据挖掘(Data Mining, DM),很多想学习的同学大多数都会问我: 什么是数据挖掘? 怎么培养数据分析的能力? 如何成为一名数据科学家? (简称数据挖掘工程师为DMer) 我认为,在学习DM之前你至少需要明白以下几点: 数据初期的准备通常占整个数据挖掘项目工作量的70%左右; 数据挖掘本身融合了统计学、数据库和机器学习等学科,并不是新的技术; 数据挖掘技术更
之前找实习还有秋招的时候看了不少大神的帖子,现在也来回馈一下~ 感觉这方面帖子也不多。
数据挖掘领域是一个独特的行业,通常的招聘方法可能不大适用于本行业的特点。在招聘一个合格的数据挖掘工程师时,公司一般关注以下三个方面: 1、他聪明吗? 聪明意味着能够透过复杂的信息建构问题并以正确的方式加以解决。聪明人还能从失败中获取经验。 2、他是否专注于项目? 专注意味着在各种困难的环境中,仍能独立或合作完成项目。 3、他能否与团队一起工作? 团队合作需要很好的沟通能力。工作中涉及到的概念、问题、模型和结论等都需要成员之间正确的沟通方能加以明确。 为了解候选人是否具有数据挖掘工程师的潜质,需要一个小时
本文中包含了数据挖掘初学者常见的问题,DMFighter对我以前回复的一些问题进行了精心的整理,在此也感谢他的辛勤工作。因为访问我博客的很多读者会不断重复提这些问题,所以我把DMFighter整理的帖子也转载过来,请初学者们先行阅读,希望能解答一些你们的疑惑。当然,我的回复也只是个人见解,不免有失偏颇,也欢迎大家进行探讨,给出你们的意见和建议。 所有内容均来自互联网的一些博客,感谢他们的建议,在此我把一些比较好的汇总一下,大家共享 请问:现在数据挖掘开发主流平台和编
一位数据挖掘成功人士 给 数据挖掘在读研究生 的建议: 关于数据挖掘方面的研究,我原来也走过一些弯路。其实从数据挖掘的起源可以发现,它并不是一门崭新的科学,而是综合了统计分析、机器学习、人工智能、数据库等诸多方面的研究成果而成,同时与专家系统、知识管理等研究方向不同的是,数据挖掘更侧重于应用的层面。 因此来说,数据挖掘融合了相当多的内容,试图全面了解所有的细节会花费很长的时间。因此我建议你的第一步是用大概三个月的时间了解数据挖掘的几个常用技术:分类、聚类、预测、关联分析、孤立点分析等等。这种了解是比较粗的
2017年中国国际大数据挖掘大赛在贵安落幕,吸引全球19个国家和地区的12646支项目团队、5万余人参赛,覆盖政务、医疗、交通、金融、教育等领域。大赛旨在唤醒沉睡的数据,发掘数据的价值。最终麻省理工大学三位博士研发的“数据融合平台”获“数据开放的价值”板块一等奖,博为101异构数据采集平台获“数据挖掘的魅力”板块一等奖,众智云基站项目获得“数字经济的效能”特别奖,蓝杞数据——冷数据黑技术和阿尔法鹰眼获“数字经济的效能”板块一等奖。此外,大赛还举办智慧交通预测挑战赛等三项系列赛事,并发起寻访高成长性大数据“幼苗”活动。
本文的主要内容编译自Blaz Zupan和Janez Demsar的一篇论文(Open-Source Tools for Data Mining)。我仅仅选择其中的要点和大家共享,同时加入一些个人的点评意见。
4. 一般地说,KDD是一个多步骤的处理过程,一般分为问题定义、数据抽取、数据预处理,数据挖掘以及模式评估等基本阶段。
每每提到数据挖掘,总有些人上来就是ETL、是算法、是数学模型,作为搞工程实施的我而言,很是头疼。其实作为数据挖掘的而言,算法只是其实现手段、是工具和实现手段而已,我们不是在创造算法(国外职业搞研究的除外),我们是在使用算法而已,换句话说我们是算法的工程化实践者。数据挖掘非今日之物,大数据挖掘也不是一个孤立的概念,其实质还是采用传统的数据挖掘的方法,只是其实现工具发生了变化而已,本质的东西还在。引入发布近20年前的CRISP-DM数据挖掘标准规范模型,供大家共享,希望能有人喜欢。
一、数据挖掘技术的基本概念 随着计算机技术的发展,各行各业都开始采用计算机及相应的信息技术进行管理和运营,这使得企业生成、收集、存贮和处理数据的能力大大提高,数据量与日俱增。企业数据实际上是企业的经验积累,当其积累到一定程度时,必然会反映出规律性的东西;对企业来,堆积如山的数据无异于一个巨大的宝库。在这样的背景下,人们迫切需要新一代的计算技术和工具来开采数据库中蕴藏的宝藏,使其成为有用的知识,指导企业的技术决策和经营决策,使企业在竞争中立于不败之地。另一方面,近十余年来,计算机和信息技术也有了长足的进展,产
关键字全网搜索最新排名 【机器学习算法】:排名第一 【机器学习】:排名第二 【Python】:排名第三 【算法】:排名第四 1. 数据、信息和知识是广义数据表现的不同形式。 2. 主要知识模式类型有:广义知识,关联知识,类知识,预测型知识,特异型知识 3. web挖掘研究的主要流派有:Web结构挖掘、Web使用挖掘、Web内容挖掘 4. 一般地说,KDD是一个多步骤的处理过程,一般分为问题定义、数据抽取、数据预处理、.数据挖掘以及模式评估等基本阶段。 5. 数据库中的知识发现处理过程模型有:阶梯处
因为毕业后想从事数据挖掘相关的职业,但对该行业的需求不太了解,网上资料太多查看花时间且抓不住重点,所以爬取了拉勾网上 900 多条相关的岗位共计 30 万字的职位描述的数据进行了相关的分析。分析结果主要想回答下面两个问题: 1、目前数据挖掘岗位的现状 ? 2、如果要从事数据挖掘行业,需要具备哪些技能 ? 分析时间:2017 年 2 月 工具:RStudio, Number, R (爬取和分析使用的都是 R ) 数据挖掘岗位现状 分两块描述,第一块是基本的统计数据,包括数据挖掘在那个城市需求最旺盛,对应
1. 数据、信息和知识是广义数据表现的不同形式。 2. 主要知识模式类型有:广义知识,关联知识,类知识,预测型知识,特异型知识 3. web挖掘研究的主要流派有:Web结构挖掘、Web使用挖掘、Web内容挖掘 4. 一般地说,KDD是一个多步骤的处理过程,一般分为问题定义、数据抽取、数据预处理、.数据挖掘以及模式评估等基本阶段。 5. 数据库中的知识发现处理过程模型有:阶梯处理过程模型,螺旋处理过程模型,以用户为中心的处理结构模型,联机KDD模型,支持多数据源多知识模式的KDD处理模型 6. 粗
谈到BI,就会谈到数据挖掘(Data mining)。数据挖掘是指用某些方法和工具,对数据进行分析,发现隐藏规律并利的一种方法。下面我们将通过具体的例子来学习什么是数据挖掘。 案例“上大学分析”-体验
因为毕业后想从事数据挖掘相关的职业,但对该行业的需求不太了解,网上资料太多查看花时间且抓不住重点,所以爬取了拉勾网上 900 多条相关的岗位共计 30 万字的职位描述的数据进行了相关的分析。分析结果主要想回答下面两个问题: 1、目前数据挖掘岗位的现状 ? 2、如果要从事数据挖掘行业,需要具备哪些技能 ? 分析时间:2017 年 2 月 工具:RStudio, Number, R (爬取和分析使用的都是 R ) 分析的代码和爬取到的数据:https://github.com/edvardHua/JobRe
求助各位数据挖掘前辈~~ 还有几天就马上研一了,我学的是数据挖掘方向,具体方向应该是微博文本类,这段时间学的挺乱的,一直没有个方向的感觉。假期期间把老师推荐的《web数据挖掘》看了一大半,java又看了一遍,发现也总是忘,可能还是练得少。看了一些python,前面的部分跟java还是很像的,看的很快,到了模块那,又感觉学的好痛苦。 我想请教一下各位前辈,如果研究生毕业想从事数据挖掘方向,我们是俩年研究生,也就是明年9月份就要签工作了。 1 我应该学些什么,哪些书籍或者技能是必须要会的呢,或者是对找工作有利
10余位数据挖掘领域资深专家和科研人员,10余年大数据挖掘咨询与实施经验结晶。从数据挖掘的应用出发,以电力、航空、医疗、互联网、生产制造以及公共服务等行业真实案例为主线,深入浅出介绍Python数据挖掘建模过程,实践性极强。
看到百度知道上经常有人问想要从事BI或者数据挖掘行业应该怎么入门,行业前景怎么样,具体推荐一些书籍以及必学技术知识,但是知道上始终也没有人给出个系统确切的指引。所以笔者就此问题整理了以下内容,希望能给处于职业十字路口的人们一些帮助。 一 BI分析师 Q1:BI分析师具体做哪些工作呢? ——BI分析师主要负责BI业务相关的数据整理、分析、报表展示、解释分析结果:包括数据建模、数据处理、BI系统设计等。 Q2:BI分析师需要具备的技能(要学的知识) ——SQL,存储过程,JAVA/C#,oracle数据库优化
作者是浙江大学计算机硕士,通过自己的努力终于拿到了心仪的offer(搜狗Web数据挖掘助理研究员),实现了从事互联网数据挖掘的梦 想。他对数据挖掘这个行业的兴趣,以及为了进入这个行业所做的准备和努力,非常值得想进入这一行业的在校生或朋友们参考。
导读:数据挖掘是一种发现知识的手段。数据挖掘要求数据分析师通过合理的方法,从数据中获取与挖掘项目相关的知识。
领取专属 10元无门槛券
手把手带您无忧上云