数据必须海量 :
① 少量数据处理 : 少量数据使用统计方法分析 , 不必使用数据挖掘 ;
② 海量数据 : 处理海量数据时 , 才使用数据挖掘 , 涉及到 有效存储 , 快速访问 , 合理表示 等方面的问题...数据挖掘算法的五个标准组件 :
① 模型或模式结构 : 决策树模型 , ( 信念 ) 贝叶斯模型 , 神经网络模型 等 ;
② 数据挖掘任务 : 概念描述 , 关联分析 , 分类 , 聚类 , 异常检测..., 趋势分析 等 ;
③ 评分函数 : 误差平方和 , 最大似然 , 准确率 等 ;
④ 搜索和优化方法 : 随机梯度下降 ;
⑤ 数据管理策略 : 数据存储 , 数据库相关 ;
1 ....异常模式 , 频繁模式 ;
② 描述建模 : 如 聚类分析 ;
③ 预测建模 : 如 分类预测 , 趋势分析等 ;
3 ....| 评分函数 | 搜索和优化算法 | 数据管理策略 )
【数据挖掘】数据挖掘算法 组件化思想 示例分析 ( 组件化思想 | Apriori 算法 | K-means 算法 | ID3 算法 )
三、