目录 1、标准数据帧 2、扩展数据帧 3、标准数据帧和扩展数据帧的特性 ---- CAN协议可以接收和发送11位标准数据帧和29位扩展数据帧,CAN标准数据帧和扩展数据帧只是帧ID长度不同,以便可以扩展更多...字节1为帧信息,第7位(FF)表示帧格式,在标准帧中FF=0,第6位(RTR)表示帧的类型,RTR=0表示为数据帧,RTR=1表示为远程帧。DLC表示在数据帧时实际的数据长度。...字节4~11为数据帧的实际数据,远程帧时无效。 2、扩展数据帧 CAN扩展帧帧信息是13字节,包括帧描述符和帧数据两部分,如下表所示: 前5字节为帧描述部分。...字节6~13为数据帧的实际数据,远程帧时无效。...3、标准数据帧和扩展数据帧的特性 CAN标准数据帧和扩展数据帧只是帧ID长度不同,功能上都是相同的,它们有一个共同的特性:帧ID数值越小,优先级越高。
当你从教育实践中学习数据科学时,你将看到大多数数据都是从多个来源、多个查询中获得的,这可能会导致一些不干净的数据。 在某些或大多数情况下,你必须提供最终用于训练模型的数据集。...有一些文章关注数字数据,但我希望本文的重点主要是文本数据,这与自然语言处理是一致的。 话虽如此,这里有一个简单的方法来清理Python中的文本数据,以及它何时有用。...现在我们已经展示了一种清理文本数据的方法,让我们讨论一下这个过程对数据科学家有用的可能应用: 删除不必要的单词以便可以执行词干分析 与上面类似,你可以使用词形还原 只保留必要的单词可以让你更容易地标记数据中的词类...当然,有更多的理由删除停用词,并清理文本数据。同样重要的是要记住,有一些新兴的算法可以很好地处理文本数据,比如CatBoost。 总结 如你所见,清理数据的一部分可以为进一步清理和处理数据奠定基础。...总而言之,以下是如何从文本数据中删除停用词: * 导入库 * 导入数据集 * 删除停用词 * 添加单独的停用词 更新:由于单词的大小写是大写的,所以没有按应该的方式删除它,因此请确保在清理之前将所有文本都小写
但是如果有些Collection希望自己控制删除数据的时间,则可以使用下面的这个脚本。...生成测试数据-- 注意下面插入的是 new Date("2023-01-01T00:00:00Z") 日期时间类型的,如果插入的是"2023-01-01 00:00:00" 则表示的是字符串类型,而不是时间类型...db.tb1.insertOne({ "name": "example2", "timestamp": new Date("2023-01-01T00:00:00Z")})db.tb1.find()数据清理脚本...") # 避免对数据库造成过大压力 time.sleep(sleep_time) client.close() print("Batch deletion completed....")# 删除超过30天的数据,每批次删除1000条,间隔1秒clean_old_data_in_batches("db1", "tb1", 30, batch_size=1000, sleep_time
0 row(s) in 0.1920 seconds 上面是基本的操作,如果你的表已经很满,满到几乎快把hadoop撑爆的时候,上面的方法是慢慢删除的方法,下面是具体的解释: ttl是hbase中表数据的过期时间...,一个列族可以对应一个ttl值 habse中数据删除不是立刻执行的,类似软删除,当你标识数据为删除状态之后,hbase会在大版本合并的时候去真正的处理hadoop上的文件,进而释放磁盘空间, 另外注意一点
1.载入包 library(tidyverse) list.files() * * * 2.长宽数据转换 family_data , # `Bd-3-2` , `Bd-3-3` , `Bd-3-4` , `Bd-3-5` , `Bd-3-6` #宽数据转为长数据
1.基本概念 import pandas as pd df = pd.read_csv("test.csv") df.sample(10) 获取前几行数据 ```python data.head() 获取数据维度信息...df.shape 获取数据表属性的相关信息 ```python data.info() 获取数据表属性类型信息 ```python data.head() ### 2.转换数据类型 ```python...sns.distplot(X.reshape((-1, 1))) #填补缺失数据后的分布 sns.distplot(X_imputed.reshape((-1, 1))) ### 5.离群数据 #...带有False的数据点表示这些值是有效的,而True则表示有释放。...考虑到数据的差距,使用抗离群值的统计工具,例如,稳健回归(用另一种参数估计方法)Robust_regression。
在了解数据帧之前,我们得先知道OSI参考模型 咱们从下往上数,数据帧在第二层数据链路层处理。我们知道,用户发送的数据从应用层开始,从上往下逐层封装,到达数据链路层就被封装成数据帧。...其中的Org Code字段设置为0,Type字段即封装上层网络协议,同Ethernet_II帧。 数据帧在网络中传输主要依据其帧头的目的mac地址。...当数据帧封装完成后从本机物理端口发出,同一冲突域中的所有PC机都会收到该帧,PC机在接受到帧后会对该帧做处理,查看目的MAC字段,如果不是自己的地址则对该帧做丢弃处理。...如果目的MAC地址与自己相匹配,则先对FCS进行校验,如果校验结果不正确则丢弃该帧。校验通过后会产看帧中的type字段,根据type字段值将数据传给上层对应的协议处理,并剥离帧头和帧尾(FCS)。...一般主机发送数据帧有三种方式:单播、组播、广播。三种发送方式的帧的D.MAC字段有些区别。
清理数据应该是数据科学(DS)或者机器学习(ML)工作流程的第一步。如果数据没有清理干净,你将很难在探索中的看到实际重要的部分。一旦你去训练你的ML模型,他们也将更难以训练。...也就是说,如果你想充分利用你的数据,它应该是干净的。 在数据科学和机器学习的环境中,数据清理意味着过滤和修改数据,使数据更容易探索,理解和建模。...在本文中,我们将讲解一些常见的数据清理,以及可以用来执行它的pandas代码! 缺失数据 大型数据集几乎不可能毫无瑕疵。也就是说,不是所有的数据点都具有其所有特征变量的值。...=0, how=’any’)返回已删除包含NaN的任何数据点的数据帧。...重复的数据是数据集中完全重复的数据点。如果有太多这种数据,它会影响ML模型的训练。如前所述,可以简单地从你的数据中删除重复数据。 可以通过删除或使用某些智能替换来处理错误数据。
清理和理解数据对结果的质量都会有很大影响。...目录 · 数据质量(合法性,准确性,完整性,一致性) · 工作流程(检查,清洁,验证,报告) · 检查(数据分析,可视化,软件包) · 清理(无关数据,重复数据,类型转换,语法错误) · 验证 · 总结...准确性:数据接近真实值的程度。 完整性:所有必需数据的已知程度。 一致性:数据在同一数据集内或跨多个数据集的一致程度。...4.报告:记录所做更改和当前存储数据质量的报告。 清理 数据清理涉及基于问题和数据类型的不同技术。可以应用不同的方法,每种方法都有自己的权衡。总的来说,不正确的数据被删除,纠正或估算。...不相关的数据: 不相关的数据是那些实际上不需要的数据,并且不适合我们试图解决的问题。 重复项: 重复项是数据集中重复的数据点。
(先来一波操作,再放概念) 远程帧和数据帧非常相似,不同之处在于: (1)RTR位,数据帧为0,远程帧为1; (2)远程帧由6个场组成:帧起始,仲裁场,控制场,CRC场,应答场,帧结束,比数据帧少了数据场...(3)远程帧发送特定的CAN ID,然后对应的ID的CAN节点收到远程帧之后,自动返回一个数据帧。...,因为远程帧比数据帧少了数据场; 正常模式下:通过CANTest软件手动发送一组数据,STM32端通过J-Link RTT调试软件也可以打印出CAN接收到的数据; 附上正常模式下,发送数据帧的显示效果...A可以用B节点的ID,发送一个Remote frame(远程帧),B收到A ID 的 Remote Frame 之后就发送数据给A!发送的数据就是数据帧!...发送的数据就是数据帧! 主要用来请求某个指定节点发送数据,而且避免总线冲突。
ocker 在长时间使用的情况下,经常需要删除旧的容器并创建新的容器,长此以往,Docker 的数据卷 volumes 会产生了非常多的僵尸文件,这些文件都是未绑定容器的目录,接下来我们看看如果通过命令清理...Docker 1.13 引入了类似于 Linux 上 df 的命令,用于查看 Docker 的磁盘使用情况:# 查看 Docker 的磁盘使用情况docker system df# 删除关闭的容器、无用的数据卷和网络...docker system prune -a2、Docker 1.9 以上的版本中,官方引入用于查询僵尸文件的命令:# 查询僵尸文件docker volume ls -qf dangling=true# 清理僵尸文件
指示是服务端接收的请求报文 MODBUS 响应是服务器发送的响应信息 MODBUS 证实是在客户端接收的响应信息 Modbus-TCP报文: 报文头MBAP MBAP为报文头,长度为7字节,组成如下: 帧结构...PDU PDU由功能码+数据组成。...数据(一个地址的数据为1位) 如:在从站0x01中,读取开始地址为0x0002的线圈数据,读0x0008位 00 01 00 00 00 06 01 01 00 02 00 08 回:数据长度为0x01...数据(长度:9+ceil(数量/8)) 如:从地址0x0000开始读0x0012个离散量输入 00 01 00 00 00 06 01 02 00 00 00 12 回:数据长度为0x03个字节,数据为...寄存器数据(长度:9+寄存器数量×2) 如:读起始地址为0x0002,数量为0x0005的寄存器数据 00 01 00 00 00 06 01 04 00 02 00 05 回:数据长度为0x0A,第一个寄存器的数据为
1.下载 http://dx1.pc0359.cn/soft/e/ethereal.rar 2.打开软件,指定抓取的网卡,下面是我抓取自己的主要网卡数据 ?...4.查看数据帧的目标MAC地址 和 源MAC地址 和类型 0800表示ip 和数据 ? ?
例如报文数据 @x5B ="5"+"B"= X35 + X42 ....数据帧格式如下: 从ASCI报文帧可以看出,ASCI模式增加了起始(“:"和结束标志(回车&换行),由于报文数据每字节在ASCI模式下需要2字符进行编码,为了保证ASCI模式和RTU模式在应用级兼容,ASCI...模式数据块最大长度为252x2,所以可以计算出报文帧最大长度为1+2+2+2x252+2+2=513字符,报文顿内的字符间隔时间可以达1秒钟。...地址为0x0405,数据为0x1234,LRC校验值为0XAA。实际进行校验的数据不包含头和帧尾。 0xAA = LRC(01,06, 04,05,12,34)。...手动LRC计算方法 把原始数据两个字符组成一个字节,并进行二进制加法计算:01+06+04+05+12+34=0x56,计算二进制补码: 0x56 = 0101 0110取反: 1010 1001加1:
制定数据清理策略根据需求制定合理的数据清理策略,避免资源浪费。保留期限:设置数据的保留时间(如 30 天、90 天),定期清理过期文件。...分类清理:按数据类型或项目清理数据(如删除临时文件、归档旧数据)。冗余数据:清理重复或无用的数据。3. 自动化清理任务通过脚本或工具实现数据的自动化清理。...手动清理数据在自动化清理之前,可以手动清理部分数据以释放空间。...防止误删重要数据在清理数据前,确保重要数据已备份。...# 示例:查看清理后的磁盘使用情况 df -h # 示例:检查数据目录的剩余文件ls -lh /path/to/moodle/如果清理失败,需排查原因并修复。7.
制定数据清理策略根据需求制定合理的数据清理策略,避免资源浪费。保留期限:设置文档的保留时间(如 30 天、90 天),定期清理过期文件。...分类清理:按文档类型或项目清理数据(如删除临时文件、归档旧文档)。冗余数据:清理重复或无用的文件。3. 自动化清理任务通过脚本或工具实现数据的自动化清理。...手动清理数据在自动化清理之前,可以手动清理部分数据以释放空间。...防止误删重要数据在清理数据前,确保重要数据已备份。...# 示例:备份文档数据cp -r /path/to/documents/ /backup/documents_$(date +%F)/ 对重要数据设置保护属性:sudo chattr +i /path/
介绍 Modbus-RTU数据帧,帧长度最大为256字节,由以下4部分构成: 子节点地址: 1字节,范围0-247 功能代码: 1字节 数据块: 0-252字节 CRC校验值: 2字节,低8位在前 帧描述...Modbus-RTU帧间隔,Modbus-RTU要求两个RTU报文帧间隔要大于3.5个字节时间: 且每个报文帧内字节间隔小于1.5个字节时间,否则会认为接收不完整。...可以看出,当写1个寄存器数据时,从机响应的数据帧和主机发送的数据帧完成一致。 示例2: 写多个寄存器。...可以看出,写多个寄存器时使用10功能码,从机回复数据也比较精简。 示例3: 读单个寄存器。...表示读1个寄存器 02表示2个字节,56 78表示寄存器的数据 示例4: 读多个寄存器。
大家刚开始用Spark Streaming时,心里肯定嘀咕,对于一个7*24小时运行的数据,cache住的RDD,broadcast 系统会帮忙自己清理掉么?还是说必须自己做清理?...DStream(比如ForeachDStream),接着是清理输入类(基于Receiver模式)的数据。...cache数据,进行unpersit 操作,并且显示的移除block 根据依赖调用其他的DStream进行动作清理 这里我们还可以看到,通过参数spark.streaming.unpersist 你是可以决定是否手工控制是否需要对...cache住的数据进行清理。...然后根据Spark Streaming的定时性,每个周期只要完成了,都会触发清理动作,这个就是清理动作发生的时机。
查询你的数据 当数据发送到 Kafka 后,Druid 应该能够马上查询到导入的数据的。 请访问 query tutorial 页面中的内容来了解如何针对新导入的数据运行一些查询。...清理 如果你希望其他的一些入门教程的话,你需要首先关闭 Druid 集群;删除 var 目录中的所有内容;再重新启动 Druid 集群。...这是因为本教程中其他的导入数据方式也会写入相同的 “wikipedia” 数据源,如果你使用不同的数据源的话就不需要进行清理了。 同时你可能也希望清理掉 Kafka 中的数据。
/prometheus --storage.tsdb.retention=180d --web.enable-admin-api 2、测试清理key 假定我们要清理的 key是 mysql_global_status_threads_running...{instance="test-db13:9104",job="mysql"}: 清理这个key的全部的数据 curl -X POST \ -g 'http://192.168.2.100:9090...match[]=up&match[]=mysql_global_status_threads_running{instance="test-db13:9104",job="mysql"}' 清理这个key...指定时间段的数据 (清理的时间戳区间:1557903714 到 155790395 ) curl -X POST \ -g 'http://192.168.2.100:9090/api/v1/admin
领取专属 10元无门槛券
手把手带您无忧上云