数据分析在保险行业的运用 由于客户的价值我们可能直接无法得到,这可能需要通过客户的属性信息或行为信息来判断。所以通过客户数据来判断客户价值,进行客户价值管理是未来的趋势,而数据分析就是这一方法的重要技术手段。现在数据分析可以说在商业中的应用越来越广泛,尤其是在互联网、通讯、金融、零售业中的应用,自上世纪数据分析技术在美国应用以来,现在已推广到全世界更多的行业之中。上世纪90年代末数据分析这一概念随着沃尔玛啤酒与尿布的典型案例来到中国来。那么数据分析技术在国内应用如何呢?在保险行业的应用又会如何呢? 一、数据
关于本书 数据分析是作为一名运营人员需要掌握的一项基本技能,本书基于职场三人的对话(BOSS、数据分析菜鸟、数据分析高手),从数据分析概念、作用、步奏三个方面进行阐述,是一本数据分析入门书,是数据分析新手的不二选择。 1数据分析的概念 数据分析是指用适当的统计分析方法对收集来的大量数据进行分析,将他们加以汇总和理解消化,以求最大化地开发数据的功能,发挥数据的作用。 2数据分析的作用 数据分析是把隐藏在一大批看似杂乱无章的数据背后的信息集中和提炼出来,总结出所研究对象的内在规律。在企业的日常经营分析中有三
浅谈数据分析与数据挖掘? 数据分析和数据挖掘都可以做为“玩数据”的方法论,两者有很多的共性,也有显著的差异。 从分析的目的来看,数据分析一般是对历史数据进行统计学上的一些分析,数据挖掘更侧重于
很多人会问数据分析目的是什么?它有什么作用?让我们看看亿信华辰如何看待数据分析的目的和意义。仅仅谈论数据分析的作用实际上并不重要,因此在谈论该作用之前,我们首先要考虑受众,打个比方:对于个人而言,由于身体感应设备的原因,让我们每天锻炼身体健身各种指标可以数字化,最终完成对个人身体和生活习惯的自我量化,然后完善对个人日常生活规律的调节,使我们过上更好的生活。
随着经济的快速增长,各个行业企业的各种客户数据信息、交易数据信息也成爆炸式增长,尤其是通信、电商等行业。大部分企业管理者开始意识到数据所能够带来的具体潜力与价值,数据分析技术也逐渐被人们使用。与此同时,数据分析人员供不应求,据麦肯锡咨询公司一份报告显示,到2018年,仅在美国,数据分析人才缺口约150万。 然而目前数据分析行业并没有统一规范标准,大部分大学里都没有开设专门的数据分析专业,从事数据分析工作人员大都为统计学、数学、信息计算、管理学、心理学等专业,对数据分析并没有一个清晰体系的认识,有的甚至连数据
具有从大数据分析及数据科学中获取独特见解的公司,可以拥有关键信息优势,从而在第四次工业革命(也称为数字时代)中蓬勃发展。
数据分析报告是对整个数据分析过程的一个总结与呈现。通过报告,把数据分析的起因、过程、结果及建议完整的呈现出来,供决策者参考。 一份好的数据分析报告,首先要有好的分析框架,并且图文并茂,层次清晰,能够让阅读者一目了然;其次需要有明确的结论;最后需要有建议或解决方案。
导读:只要是在科技创新领域的公司,纷纷都挂出来了急招“数据分析师”的牌子。但是很多人对它的概念并不了解,本文为你一一道来数据分析岗的功能目的,以及组建方式,干货满满,诚意推荐! 数据分析行业现在大热,只要是在科技创新领域的公司,纷纷都挂出来了急招“数据分析师”的牌子。但是很多人对它的概念并不了解,还有更多的创业者更是不知道是否应该去组建一支数据分析团队,在什么时机组建?又以何种方式组建?本文为你一一道来。干货满满,诚意推荐! 这篇文章的作者是 Instacart数据分析副总裁 Jeremy Stanly
软件和服务的大数据分析市场收入预计将从2018年的 42B增长到2027年的 103B,复合年增长率(CAGR)为10.48%。这就是为什么,大数据分析认证是业内最全神贯注的技能之一。 在这个“大数据分析应用领域”文章中,我将带您进入各个行业领域,在这里我将解释大数据分析如何使它们发生革命性变化。
数据分析是指通过收集、整理、分析和解释数据来发现数据中隐藏的信息和关系的一种方法。数据分析的目的是为了提供洞察力和指导决策。
我就在这里等你关注,不离不弃 ——A·May 数据分析和数据挖掘的区别到底在哪?这个问题还是要想清楚的,最开始,我以为用Python和R这种高级的编程软件做出来数据分析的结果才是数据挖掘的范围,而用excel和SPSS做出的统计结果属于分析。但是,实际上这个标准不是按照使用软件来区分,而通过对数据进行分析的方法和分析的结果来划分。 从广义而言,数据分析包括数据挖掘,但是从狭义而言,数据分析与数据挖局又有显著的区别,下面的图很好地表示了两者的关系。 注:图来自于互联网,如果侵权,请联系May删除 我们可以
导读:只要是在科技创新领域的公司,纷纷都挂出来了急招“数据分析师”的牌子。但是很多人对它的概念并不了解,本文为你一一道来数据分析岗的功能目的,以及组建方式,干货满满,诚意推荐! 数据分析行业现在大热,只要是在科技创新领域的公司,纷纷都挂出来了急招“数据分析师”的牌子。但是很多人对它的概念并不了解,还有更多的创业者更是不知道是否应该去组建一支数据分析团队,在什么时机组建?又以何种方式组建?本文为你一一道来。干货满满,诚意推荐! 这篇文章的作者是 Instacart数据分析副总裁 Jeremy Stanly 以
导读 为了发挥清华大学多学科优势,搭建跨学科交叉融合平台,创新跨学科交叉培养模式,培养具有大数据思维和应用创新的“π”型人才,由清华大学研究生院、清华大学大数据研究中心及相关院系共同设计组织的“清华大学大数据能力提升项目”开始实施并深受校内师生的认可。项目通过整合建设课程模块,形成了大数据思维与技能、跨界学习、实操应用相结合的大数据课程体系和线上线下混合式教学模式,显著提升了学生大数据分析能力和创新应用能力。 生活照 课堂:从“有用”到“有趣” 我自认为思维比较偏工程,低年级为了挑战自己,选择了理论方面的
随着科学技术的进步,对于科学数据的分析和可视化呈现需求越来越高。而Origin软件是一款功能强大、易于操作的科学数据分析与绘图软件。本文旨在探讨Origin软件的基本功能、特点及其在科学研究中的应用,以期为相关领域的工作者提供参考和借鉴。
随着信息时代的到来,海量的数据不断涌现,这就引发了一个新的挑战:如何从这些海量数据中提取有用的信息和洞察,以便做出更明智的决策。大数据分析作为应对这一挑战的重要手段,正日益受到关注。而在大数据分析领域,云计算技术发挥着不可替代的作用。本文将探讨云计算在大数据分析中的应用、优势以及对未来发展的影响,同时通过代码示例来帮助读者更好地理解这一重要主题。
这是一篇方法论。是的,很枯燥。 在知乎、woshipm、pmcaff、产品100等搜索了大量的数据分析相关的文章,发现没有多少适合自己的,因为内容太过碎片化,就买了一套书,开始系统的学习。 当你完成一份数据分析报告时,不知领导是否有问过你,“你的分析方法论是什么?”。如果分析方法论不正确或不合理,那分析结果参考价值几何呢? 1、困惑 相信很多人在做数据分析时,会经常遇到这几个问题:不知从哪方面入手开展分析;分析的内容和指标常常被质疑是否合理、完整,自己也说不出个所以然来。当然我也一样,处在数据分析的学习
这是一篇方法论。是的,很枯燥。 在知乎、woshipm、pmcaff、产品100等搜索了大量的数据分析相关的文章,发现没有多少适合自己的,因为内容太过碎片化,就买了一套书,开始系统的学习。 当你完成一份数据分析报告时,不知领导是否有问过你,“你的分析方法论是什么?”。如果分析方法论不正确或不合理,那分析结果参考价值几何呢? ◆ ◆ ◆ 困惑 相信很多人在做数据分析时,会经常遇到这几个问题:不知从哪方面入手开展分析;分析的内容和指标常常被质疑是否合理、完整,自己也说不出个所以然来。当然我也一样,处在数据分析
“你做的数据分析有什么用?”是一个面试时经常被问到的问题,也让很多同学犯难。要么不知道从何说起,要么回答完了被人怼回来。今天我们系统性解答一下。
感谢猎聘投稿 一、 猎聘网职业大数据分析简介 猎聘网,专注于打造以经理人个人用户体验为核心的职业发展平台。 二、 数据分析师人才需求的形势 从猎聘网的中高端职位数据来看,2015年数据分析师职位需求呈
在大数据时代,混乱的、无结构的、多媒体的海量数据,通过各种渠道源源不断地积累和记载着人类活动的各种痕迹。探索性数据分析可以成为了一个有效的工具。 美国约翰·怀尔德杜克(John Wilder Tukey)1977年在《探索性数据分析》(Exploratory Data Analysis)一书中第一次系统地论述了探索性数据分析。他的主要观点是:探索性数据分析(EDA)与验证性数据分析(Confirmatory Data Analysis )有所不同:前者注重于对数据进行概括性的描述,不受数据模型和科研假设的限
“互联网每2天产生的数据量,与2003年之前产生的数据总量一样多;短短三天,网民便会发送超过10亿条的推特消息;每天有500万条交易事件被记录。” “IBM首次赞助全国大学生数学建模竞赛,并设立专门奖项,激励大学生对数据分析和建模的兴趣” “麦肯锡发布大数据报告中预测,到2018年美国的高级数据分析人才的缺口将达到人才实际供给量的50%-60%。 “美国劳工统计局就预测,在未来8年,对数据分析专业人才的需求将增长24%。”
美国企业与高等教育论坛(BHEF)与普华永道(PWC)近期发布重要报告,数据科学与数据分析的人才需求每年都在增长,而每年的高校毕业生数量远远无法满足行业需求。 就连NBA在选拔球员时也离不开数据分析,比如76人队就拥有属于自己的数据分析部门。比如在选拔新队员恩比德和西蒙斯时,数据分析的作用功不可没。 近年来,几乎所有的企业都将数据提升到企业的战略发展中,期待其在企业中发挥关键性的作用,因此数据人才也开始被争抢:市场分析师、数据咨询师、金融分析师、数据产品经理、数据运营……数据岗位的薪资水涨船高,成为目前最有
数据挖掘是指有组织有目的地收集数据、分析数据,并从这些大量数据提取出需要的有用信息,从而寻找出数据中存在的规律、规则、知识以及模式、关联、变化、异常和有意义的结构。
自从做公众号以来,一直都有学生问我 现在数据分析那么火热,现在入行迟吗? 会不会刚等我都出来了,行业对数据分析师的需求也接近饱和了? 我的答案是: 不会。 “数据分析的人才需求每年都在增长,而每年的高
首先产品经理应不应该学习代码?不同的产品经理持有不同的观点。编程能力在产品经理的工作中是一个非必要的基本功,但会使用编程能力会给我们自己的工作带来加分项。因此在有空闲时间时可以学习代码作为自己的一个加分项,或者学习技术架构里面的逻辑。
要想弄清楚商业智能BI与数据分析的区别和联系,我们首先来看下什么是商业智能BI,什么是数据分析。
2018年4月28日,教育部高等教育司发函〔2018〕18号《教育部高等教育司关于公布有关企业支持的产学合作协同育人项目申报指南(2018年第一批)的函》。
我们生活在一个大数据时代,数据无处不在,CDA数据分析师在现如今的社会中已经越来越火热了,不少的人想要问什么是CDA数据分析师?如何成为一名CDA数据分析师?下面我们就对此有一个简单的介绍。
首先,数据分析方法论就如同国家的方针政策,指导和决策我们分析的方向。从宏观角度知道如何进行数据分析,就像是一个数据分析的前期规划,知道着后期数据分析工作的开展。
通过用户代理我们可以将普通的爬虫程序伪装成浏览器,而IP代理的作用则是用于突破目标服务器对同一IP访问频率的限制。
这是一个来自百度内部培训关于数据分享的、阅读类的PPT,文字说明非常充分,适合刚入门数据分析的朋友进行学习。
数据运用更加普遍,成功案例越来越多,很多人都会说一点数据,有万科要求全员会数据分析、美团利用数据管控成本赢得了百团大战、饿了么和滴滴利用数据实现订单合理派送等等大企业的案例,也有用数据分析卖出几十万件充电宝、用数据降低母婴厂商废品率、用数据将流量拉新和促活提升16倍等等小企业的案例。
在BI界广泛流传着一个观点,不懂商业别做数据分析,可见商业理解对于数据分析的重要性。然后现实中,数据分析切合业务往往四处碰钉子,那么如何解决这个业界难题呢?数据分析人往往是用经典案例套业务的需求,或者
回溯统计的发展历程,从小数据到大数据的分析思路均源于验证性数据分析,因此,业务需求尤为重要,而需求从何而来是由数据分析师所处的行业而定的。
当你交给公司领导一份数据分析报告时,领导会问你的数据分析方法论是什么,如果你的方法论不正确或不合理,那么你的分析报告将没有价值可言,那么事实情况是不是这样呢?我们得从数据分析方法论的概念说起。
如果你正好是一名BI数据分析师或者在准备当BI数据分析师的路上,当你看到这个标题时可能就会开始各种不满,淡定!先稍安勿躁,咱先聊聊为什么我会这么说,如果你有其他异议,欢迎在评论区提出!
很多刚接触BI的人可能会有这个疑问,各大BI厂商在介绍BI的时候,也都会说BI是数据分析工具,其实,BI与数据分析并不能划等号。
在做数据分析的过程中,经常会想数据分析到底是什么?为什么要做数据数据分析?数据分析到底该怎么做?等这些问题。对于这些问题,宝器一开始也只是有个很笼统的认识。
该图是数据分析概述部分。主要讲述了一个数据分析人应该具备哪些基本素质?有哪些职业要求?同时也讲述了数据分析的一些常用指标和述语,有哪些数据分析的类型,数据分析有什么作用,以及我们做数据分析有哪些主要流程。
本文探讨了开源技术在大数据处理和分析领域的重要性,分析了开源工具在处理大数据、构建分析流程和实现数据可视化方面的作用。通过深入研究不同的开源解决方案,我们将了解开源如何在大数据和分析中发挥关键作用。
数据分析师必备技能SQL 在数据分析的整个流程中,数据获取是不可或缺的一环,那么作为数据分析师,我们不仅仅需要了解如何获取二手数据,还必须掌握如何从数据库中获取我们所需的一手数据。而事实上,在我面试过的数据分析师中,有部分分析师并没有掌握这项基本且重要的技能,以致于最终被淘汰,而这项基本且重要的技能就是会编写SQL。 SQL的基本概念和作用 SQL的基本概念:SQL是一种结构化查询语言(Structured Query Language),用于存取数据以及查询、更新和管理关系型数据库。对于专业的数据库管
最近在部门室内的交流会上,分享了一些撰写数据分析文章的心得,索性今天把这些心得体会以文字的形式记录下来,一方面当成是对数据分析工作的分享,另一方面作为个人成长记录,可能未来回头再看此文会觉得幼稚、粗浅。
近年来,越来越多的人选择大数据行业,只看到了大数据行业前景不错、薪资待遇不错,而且培训项目、机构众多,各大名企对于大数据人才的需求也不断上涨。 但是没有对岗位和自身进行合理评估,求职或者入职之后或许才发现其实跟自己想的也许不一样。在入行数据分析或者任何一行之前,你都要好好思考这些问题:我希望进入哪些行业呢?这行业有前景吗?需要什么样的知识结构?符合我的兴趣方向吗? 1、职业爱好:分析需求、写代码、与人沟通、探索未知是你喜欢的吗? 2、思考能力:如何根据数据推演、分析、提出解决方案,这常常需要你脑洞大开。
1.数据是有立场的,立场决定解读 数据对于业务来讲,是KPI的衡量标杆,也是行动指南。但一旦涉及到立场和方向性的东西,必然有利益触发点的问题。比如同样的一次活动的网站转化率是1.2%,是好还是坏?这是做数据分析第一步要进行的定位,也就是我们所说的下结论。好坏的区分在于比较,如何比较呢?我们知道比较分析方法有环比、占比、定基比、横向比、纵向比等,其中如环比可以比较昨日、上周今日、上月今日等,不同的时间对比出的结果一定有差异,甚至是迥然不同的结果。那面对这种情况,除了分析师的经验以外,在都符合统计学规律的前提下
👆点击“博文视点Broadview”,获取更多书讯 数字经济时代,数据成为新时代的生产要素!数据已成为企业的重要生产力! “生产力”是企业创造财富的能力,掌握数据分析能力的企业将具备创造更多财富的能力。 很多小伙伴已经看到了数据分析对企业经营的重要性,也看到掌握数据分析技能的员工自然能成为企业的中坚力量,是各企业争相抢夺的宝贵人力资源。 所以,越来越多的人想要学习数据分析这一技能,来增强自己的职场竞争力,或为自己未来转岗、加薪铺路。 而CDA数字化人才身份认证是数据分析领域得到业界广泛认可的凭证,不少想要
从今天起,小C会开始每天推送一篇数据分析在各个行业的应用。大家有好的文章也欢迎推荐给我们。共同学习,一起进步。 1 “失控”体系下的互联网金融 互联网的快速发展,给我们的生活带来了诸多便利,也改变了我们的传统生活模式。如同凯文·凯利在《失控》一书中所描述的,网络的出现,宣告着乌合之众登上历史大舞台,原来只能“一将功成万骨枯”的炮灰生命其历程或将从此改变。网络的出现极大改变了社会之间的关系,在这样一个类似于神经网络架构的社会中,无数“神经元”通过传递汇聚信号形成较为统一的“命令”而控制“躯体”的“运动”,它们
在Python爬虫中,数据处理起着至关重要的作用,但也面临着诸多挑战。为了提高数据处理效率,引入Pandas库成为一种行之有效的方法。本文将详细介绍Pandas数据处理技术,探讨其在优化Python爬虫效率中的作用。
领取专属 10元无门槛券
手把手带您无忧上云