从上期全球大数据领域投融资分析(2016年上半年全球大数据领域投融资市场分析)中可以看出,美国比较侧重发展大数据的技术应用,而数据分析是大数据技术应用领域投融资最多的技术方向。2016年上半年,中国在
毕业后我去了一家世界500强企业,从事的是搭建手机通信芯片里面一个小电路的工作。干了一年半,在转行的念头中挣扎了半年,然后裸辞回家,思考人生。
前阵子,和同学吃饭聊到收入,他说“你们程序员的工资好!高!呀!” 事实上,也就是一份辛苦钱...... 干程序员,我要老板的钱,可老板想要我的命啊! 做运维的,平台问题立马得解决,724365不间断服务。天天对着服务器,连个说话的人都没有; 做测试的,项目稍有改动,就要重新测试。都说人工智能,测试就是负责“人工”这一块的; ...... 现在要说真正有“钱”途的岗位是什么?数据分析一定榜上有名。 任何一家公司都需要利用数据驱动业务的增长。尤其是在今年经济不景气,各行业增量减少的情况下,数据分析指
【摘要】数据分析师是企业的贤内助,可帮企业识别市场机会、控制决策风险,保证企业利益的最大化。< span>< span>< span>< span> 数据分析师是企业的贤内助,可帮企业识别市场机会、控制决策风险,保证企业利益的最大化。在此,数据分析工作越来越受到各界的青睐。被《HR管理世界》评为七大赚钱行业之一,也被视为我国21世纪的黄金职业。在这样的背景下,有些网友想进入到数据分析行业,但对如何规划自己的职业之路比较迷茫。这里我谈谈自己的一些浅显理解,与大家切磋。 这个话题可以
因为大数据爆发,因此出现了大数据开发、大数据分析这两大主流的工作方向,目前这两个方向是很热门,不少人已经在开始转型往这两个方向发展,相较而言,转向大数据分析的人才更多一点,而同时也有不少人在观望中,这边科多大数据收集了十个为什么要学习大数据分析的十个理由。
数据分析和数据挖掘是数据从业者非常关注的两个岗位。这两个岗位到底有哪些区别?常听人说数据分析偏业务、偏前台,而数据挖掘偏技术,偏后台。所以要早点选定一个方向进行深耕才行?
本项目所使用的数据集全部来自拉勾网,是通过集搜客这一网络爬虫工具来爬取的。之所以选择拉勾网作为本项目的数据源,主要是因为相对于其他招聘网站,拉钩网上的岗位信息非常完整、整洁,极少存在信息的缺漏。并且几乎所有展现出来的信息都是非常规范化的,极大的减少了前期数据清理和数据整理的工作量。(笔者毕竟是工作之余完成,时间有限,能省则省)本次爬取信息的时候,主要获得了以下信息:
想要从事数据分析师这个岗位,那自然首先需要对这个岗位有所了解。最直接、最真实的方式就是从企业那里获得需求讯息,这样才最能够指导自己的学习方向和简历准备。本文即是要利用爬虫爬取拉勾网上数据分析这一岗位的信息,然后进行一些探索和分析,以数据分析来了解‘数据分析’。 数据来源 本项目所使用的数据集全部来自拉勾网,是通过集搜客这一网络爬虫工具来爬取的。之所以选择拉勾网作为本项目的数据源,主要是因为相对于其他招聘网站,拉钩网上的岗位信息非常完整、整洁,极少存在信息的缺漏。并且几乎所有展现出来的信息都是非常规范化的
经常看到很多朋友会问,入行数据分析之前我要不要学个java,学个Tableau,然后在学个Python会比较容易。好像是说,数据分析一定需要Python才能做,分析变成了为某种编程语言、某种可视化工具服务。
按要求转自软件定义世界(SDX) ID:SDx-SoftwareDefinedx 想要从事数据分析师这个岗位,那自然首先需要对这个岗位有所了解。最直接、最真实的方式就是从企业那里获得需求讯息,这样才最能够指导自己的学习方向和简历准备。本文即是要利用爬虫爬取拉勾网上数据分析这一岗位的信息,然后进行一些探索和分析,以数据分析来了解‘数据分析’。 数据来源 本项目所使用的数据集全部来自拉勾网,是通过集搜客这一网络爬虫工具来爬取的。之所以选择拉勾网作为本项目的数据源,主要是因为相对于其他招聘网站,拉钩网上的岗位信息
想要从事数据分析师这个岗位,那自然首先需要对这个岗位有所了解。最直接、最真实的方式就是从企业那里获得需求讯息,这样才最能够指导自己的学习方向和简历准备。本文即是要利用爬虫爬取拉勾网上数据分析这一岗位的信息,然后进行一些探索和分析,以数据分析来了解‘数据分析’。 数据来源 本项目所使用的数据集全部来自拉勾网,是通过集搜客这一网络爬虫工具来爬取的。之所以选择拉勾网作为本项目的数据源,主要是因为相对于其他招聘网站,拉钩网上的岗位信息非常完整、整洁,极少存在信息的缺漏。并且几乎所有展现出来的信息都是非常规范化的,极
有朋友留言问:面试数据分析相关工作,面试官让我说说数据工程师和数据分析师的区别在哪里,怎么回答?
摘要总结:本文主要介绍了数据分析和数据挖掘的区别与联系,从定义、目的、方法、结果等方面进行了详细阐述。数据分析包括广义和狭义的数据分析,数据挖掘则是一种广义的数据分析方法。两者在数据分析的过程中互为补充,共同构成了广义的数据分析。
很多HR的同学在学习人力资源数据分析课程的时候,都会问人力资源的数据分析在未来的发展方向是怎么样的,有哪些行业或者岗位可以从事人力资源数据分析的工作,我们帮大家梳理了下现阶段人力资源数据分析的发展方向和岗位。
数据分析作为最近火热的细分行业,越来越受到大家的关注。但最近和一些数据分析师沟通时,大家都对自己的未来发展感到有些困惑。除了一路从初级数据分析师做到高级,最终走向团队管理外,未来数据分析师还有哪些职业
点击上方 “蓝色字” 可关注我们! 结合目前了解的信息和我的个人情况,从技术上我将数据分析和数据挖掘的从业分为两块:一是掌握基本统计知识,会用excel、spass、sas、matlab、r等基本软件,从事数据的简单分析和挖掘;二是主要侧重于计算机专业的技能,如数据库、机器学习,掌握sql、Oracle、 Clementine、c、c++、java、Linux、Unix、PHP、Hadoop、MapReduceHBase、Hypertable等,具有一定的理论和技术深度的综合分析和挖掘。 一般而言,前者适合
前面的一系列文章,笔者顺着数据全链路的方向,介绍了从埋点到数仓建设到指标相关的基础知识,还有常用的波动分析 和 AB-Test等工作内容
这周刚结束一家公司的 3 轮面试,拿到了数据分析岗的 offer。虽然岗位没变,但是在有一年gap year 和跨行求职的前提下拿到的 offer 。
本文转自网络大数据,转载请注明来源 数据分析作为最近火热的细分行业,越来越受到大家的关注。但最近和一些数据分析师沟通时,大家都对自己的未来发展感到有些困惑。除了一路从初级数据分析师做到高级,最终走
从统计到数据分析,从数据挖掘到大数据,数据科学逐渐成为了一门新兴的学科,数据分析师也逐渐成为了一门抢手的职业。如何成为数据分析师?如何入行数据分析?教育是一个难题!在这个行业中,是否有高质量的证书?拿到证书后能找到多少薪资的工作?今天,我们来分析分析作为这个行业中的老牌,CDA数据分析师的等级标准。
模型纷繁复杂,要根据分析目的和模型对数据的要求选择模型;显著性检验在python中比较隐秘,需要日常积累
我就在这里等你关注,不离不弃 ——A·May 数据分析和数据挖掘的区别到底在哪?这个问题还是要想清楚的,最开始,我以为用Python和R这种高级的编程软件做出来数据分析的结果才是数据挖掘的范围,而用excel和SPSS做出的统计结果属于分析。但是,实际上这个标准不是按照使用软件来区分,而通过对数据进行分析的方法和分析的结果来划分。 从广义而言,数据分析包括数据挖掘,但是从狭义而言,数据分析与数据挖局又有显著的区别,下面的图很好地表示了两者的关系。 注:图来自于互联网,如果侵权,请联系May删除 我们可以
当你交给公司领导一份数据分析报告时,领导会问你的数据分析方法论是什么,如果你的方法论不正确或不合理,那么你的分析报告将没有价值可言,那么事实情况是不是这样呢?我们得从数据分析方法论的概念说起。
大数据的方向有很多的,即使没有真正经历过,平时也会耳濡目染,在各大杂志公众号新闻上听说过,什么大数据人工智能,大数据分析挖掘,大数据架构师等职位。
阅读建议:本文和大家分享一下数据分析是如何进阶的,内容相对轻松,可在闲暇时拿来品品,欢迎「分享」给你的小伙伴们哦。
数据工作者最长也是有效的一种工作方式是带项目,无论是数据分析还是专项挖掘,项目制能使数据尽量贴近业务并且有效理解业务和数据的各个维度。那么如何建立面向业务落地的数据分析(挖掘)流程? 在做本篇介绍之前,有以下几个方向需要做一个界定,这些界定是做本篇的前提: 该项目流程是面向业务层的,直接通过模型做代码优化或者以BI技术为方向的不同; 该项目的领导者是具有一定能力的数据分析师,需要具备业务常识、数据理解能力和专项分析挖掘能力,说白了,能接受问题并且能解决问题; 该项目是以
参考:超详细的数据分析职业规划 一个产品的出现可以从业务和技术两个方向分析,业务需求+技术支持=产品的出现。 如果把职业也当成一个产品,也有类似的分析,
回溯统计的发展历程,从小数据到大数据的分析思路均源于验证性数据分析,因此,业务需求尤为重要,而需求从何而来是由数据分析师所处的行业而定的。
最近在部门室内的交流会上,分享了一些撰写数据分析文章的心得,索性今天把这些心得体会以文字的形式记录下来,一方面当成是对数据分析工作的分享,另一方面作为个人成长记录,可能未来回头再看此文会觉得幼稚、粗浅。
本篇是给各种有兴趣的,好奇的,想学习,想转行的门外汉做的简介,有兴趣的同学请传阅,业内各位老炮儿看了随意吐槽 ( ^∀^)
数据工作者最长也是有效的一种工作方式是带项目,无论是数据分析还是专项挖掘,项目制能使数据尽量贴近业务并且有效理解业务和数据的各个维度。那么如何建立面向业务落地的数据分析(挖掘)流程? 在做本篇介绍之前
作者 Gam 本文为CDA数据分析师原创作品,转载需授权 数据分析老鸟都知道,相比于自己作出好的数据分析报告,“教别人如何入门数据分析”这事情简单多了。 什么for循环呀,def函数呀,print
入行之后,我才发现数据分析其实可以分为两种:一种类似产品经理、一种偏向数据挖掘,类似产品经理向更加注重业务,对业务能力要求比较高;数据挖掘向更加注重技术,对算法代码能力要求比较高。
各个行业的数据中台解决方案类似,只是涉及到的业务不同,建设框架类似。下面以零售行业构建数据中台和网易构建的数据中台为例,说明构建数据中台的解决方案。
如果你是一个对编程毫无经验的小白,那么首先你应该掌握一定的编程基础(尤其像从其它行业转行到IT行业的朋友们)。对于新手来说,博主认为Python语言是最佳的选择。作为一个解释型的动态高级语言,Python易于理解,上手简单,非常适合初学者学习。一本快速入门Python语言的书籍推荐:简明Python。这本书英文原版为《A Byte of Python》,经翻译变为《简明Python》。博主也给好多人推荐过,大家看过之后基本上都很认同,是入门Python最快效果最好的书籍。
最近在做项目时经常反思,我应该如何基于运营数据的应用,为大家的工作赋能,比如提高效率、或降低成本,或提升决策准确度,或多个优化组合。这过程中,我发现自己目前仍主要以工具自动化的信息化建设思维解决问题,这种自动化的解决方案其实是经验导向,从数字化角度看,企业将面临的复杂性与不确定性将越来越严峻,经验导向的工作或决策方式将越来越不可靠,这就需要培养以数据思维来思考并解决问题的能力,简单来讲就是基于“数据+算法”的量化思维模式,用客观数据作验证、预测、推荐,减少“我觉得,我想,我估计”等经验思维模式。
想成为 Facebook 水准数据分析师,有哪些必备的核心技能?经常有小伙伴在各种渠道问我,数据分析师怎么入门?应该读什么书?如何能成为被大公司认可的数据分析师? 经常有小伙伴在各种渠道问我,数据分析
我今天分享的主题是一个数据分析师如何被滋养,思考我们如何从外界获得成长的资源,以及如何去培养自身成长的能力。 就我的经验而言,数据分析师还是分为四个阶段:助理数据分析师、初级数据分析师、中级数据分析师
顾名思义大数据是一个以数据为核心的产业。大数据产业生成流程从数据的生命周期的传导和演变上可分为这几个部分:数据收集、数据储存、数据建模、数据分析、数据变现。
大家好,今天给大家隆重介绍一下我的朋友俊欣,目前就职于魔都的一家互联网初创公司,有着丰富地海外留学经验,并且还去过20多个国家游学、旅游,而他的公众号:关于数据分析与可视化,已经累积了120+篇的原创,有关于数据分析与可视化方向的,也有Python入门实战方向的。 关注公众号:关于数据分析与可视化 后台回复【资料】可以获取众多Python学习资料 学习资料的分享 在俊欣的百宝箱当中集结了各式各样的学习资料,有Python零基础教学的内容、机器学习与深度学习的内容以及Python测试开发等等 资料
文 | 邹昕 CDA数据分析师已获得作者授权 做过一点统计模型,做过一点数据分析,现在工作名字叫数据科学家,厚着脸皮抛砖引玉,聊聊数据分析中需要养成的良好习惯。 1. 了解数据分析的目的 / 需求 做数据分析的新人可能都遇到过,辛辛苦苦花了几个小时做出来的结果,跟客户 / 合作伙伴 / PM / 老板要的不是一个东西,运气好的话回去修补一下,花个半小时之类的,运气不好的话直接推倒重来,搞不好又得晚上加班了。 比如说下午六点,正准备收拾东西回家,PM 跟你说想看用户的活跃度,跟数据分析师提出需求说,我们来看
数据分析师有理由爱Sqlserver之一-好用的插件工具推荐 数据分析师有理由爱Sqlserver之二-像使用Excel一般地使用SqlServer
了解小编的读者应该知道,我在从事了一段数据分析师的工作之后,目前岗位的title已经换成了算法工程师。虽然两个岗位存在很大交集和共通之处,但无论是工作思维还是所需技术栈方面,也都存在很大差异。前期,一名读者在后台留言问我数据分析师转岗算法工程师的经历,今天本文就结合个人实际做以总结。
最近有不少同学向大讲台老师咨询有关数据分析职业发展的问题,由此可见,随着大数据的飞速发展,数据分析职业也成为很多同学关注的目标。不要急,大讲台老师这就给大家介绍数据分析的职业发展。
经常有小伙伴在各种渠道问我,数据分析师怎么入门?应该读什么书?如何能成为被大公司认可的数据分析师? Facebook 数据分析师邹昕曾分享过这样一张“数据分析核心技能地图”: 如果按照图上的标准,你正
导读:我们坚信,未来是大数据的时代,而数据分析师,就是走在时代前端的人。别把时间花费在低产出的数据整理和清洁上面,善于利用工具,朝向正确的方向努力,一定可以在成长道路上走得更快更远。 作者:陈明,GrowingIO 联合创始人&运营副总裁 直到做数据分析师五、六年了,每每和家人朋友聊天,都还是会有人不懂我在做什么。 家人:“数据分析?分析什么东西?” 我:“哪里有数据,哪里就有我们,什么都可以分析。” 家人:“是软件工程师吗?会编程吗?” 我:“...不是,不太会。” 家人:“那是管理层吗?” 我
三月份刚来上海参加CDA的数据分析就业班培训时,我没想到这次选择将会改变我未来的职业轨迹。
领英报告表明,数据分析人才的供给指数最低,仅为0.05,属于高度稀缺。数据分析人才跳槽速度也最快,平均跳槽速度为19.8个月。
领取专属 10元无门槛券
手把手带您无忧上云