任务进度长时间维持在99%(或100%),查看任务监控页面,发现只有少量(1个或几个)reduce子任务未完成。因为其处理的数据量和其他reduce差异过大。 单一reduce的记录数与平均记录数差异过大,通常可能达到3倍甚至更多。 最长时长远大于平均时长。
面对这些问题,我们能有哪些有效的优化手段呢?下面列出一些在工作有效可行的优化手段:
1.概述 在工作中总结Hive的常用优化手段和在工作中使用Hive出现的问题。下面开始本篇文章的优化介绍。
Hive性能优化 1.概述 继续《那些年使用Hive踩过的坑》一文中的剩余部分,本篇博客赘述了在工作中总结Hive的常用优化手段和在工作中使用Hive出现的问题。下面开始本篇文章的优化介绍。 2.介绍 首先,我们来看看Hadoop的计算框架特性,在此特性下会衍生哪些问题? 数据量大不是问题,数据倾斜是个问题。 jobs数比较多的作业运行效率相对比较低,比如即使有几百行的表,如果多次关联多次汇总,产生十几个jobs,耗时很长。原因是map reduce作业初始化的时间是比较长的。 sum,
本文通过介绍数据倾斜以及数据倾斜解决方法,总结归纳了Hive、Spark、HBase等大数据处理框架在实际应用中出现的各种数据倾斜问题及其解决方法,为大数据处理框架的优化提供了方向。
我们在用hive取数的时候,有的时候只是跑一个简单的join语句,但是却跑了很长的时间,有的时候我们会觉得是集群资源不够导致的,但是很大情况下就是出现了"数据倾斜"的情况。
在今年的敏捷团队建设中,我通过Suite执行器实现了一键自动化单元测试。Juint除了Suite执行器还有哪些执行器呢?由此我的Runner探索之旅开始了
上篇【rainbowzhou 面试4/101】技术提问中,我着重说明了ETL测试中常见的两种测试场景,以及相应地测试方法。那么在实际大数据项目过程中,会遇到哪些问题呢?本篇就带你了解大数据测试过程中遇到的一些经典测试问题,并针对问题如何解决及经验教训进行相应说明,希望对大家有所帮助。
健身回来的路上,看到微信群里聊技术,一群有问了一个神奇的问题,具体可以看如下截图:
问题导读 1.本文遇到了什么问题? 2.遇到问题后,做了哪些分析? 3.本文解决倾斜使用哪些方法? 4.本次数据倾斜那种方法更有效? 5.解决性能优化问题的原理是什么? 优化后效果 1.业务处理中存在复杂的多表关联和计算逻辑(原始数据达百亿数量级) 2.优化后,spark计算性能提升了约12倍(6h-->30min) 3.最终,业务的性能瓶颈存在于ES写入(计算结果,ES索引document数约为21亿 pri.store.size约 300gb)
问题:ERROR: number of workfiles per query limit exceeded 1.可能导致文件溢出过多的原因包括: 1>数据倾斜太严重 2>可供分配内存太低
TOC 0. 十秒看完 1.业务处理中存在复杂的多表关联和计算逻辑(原始数据达百亿数量级) 2.优化后,spark计算性能提升了约12倍(6h-->30min) 3.最终,业务的性能瓶颈存在于ES写入(计算结果,ES索引document数约为21亿 pri.store.size约 300gb) [优化完整过程] 1. 背景 业务数据不断增大, Spark运行时间越来越长, 从最初的半小时到6个多小时 某日Spark程序运行6.5个小时后, 报“Too large frame...”的异常 org.apach
多数介绍数据倾斜的文章都是以大篇幅的理论为主,并没有给出具体的数据倾斜案例。当工作中遇到了倾斜问题,这些理论很难直接应用,导致我们面对倾斜时还是不知所措。
hive是基于大数据开发的一组用于数据仓库的api,其主要功能是将HQL(HIVE SQL)转换成MapReduce执行。所以对hive的优化几乎等于对MapReduce的优化,主要在io和数据倾斜方面进行优化。
一般比较关注YarnApplicationState 、Logs、ApplicationMaster。
数据倾斜,技术黑话中最成功的的一个词。发明这个词儿的人,一定是天才,它在数据量和复杂度上,一箭双雕。
0x00 前言 数据倾斜是大数据领域绕不开的拦路虎,当你所需处理的数据量到达了上亿甚至是千亿条的时候,数据倾斜将是横在你面前一道巨大的坎。 迈的过去,将会海阔天空!迈不过去,就要做好准备:很可能有几周甚至几月都要头疼于数据倾斜导致的各类诡异的问题。 文章结构 先大致解释一下什么是数据倾斜 再根据几个场景来描述一下数据倾斜产生的情况 详细分析一下在Hadoop和Spark中产生数据倾斜的原因 如何解决(优化)数据倾斜问题? 0x01 什么是数据倾斜 简单的讲,数据倾斜就是我们在计算数据的时候,数据的
相信大部分做数据的童鞋们都会遇到数据倾斜,数据倾斜会发生在数据开发的各个环节中,比如:
直接使用cross join关联只会分配一个reduce,导致耗时严重,因此我们可以将小表扩充一列,并且复制n倍,然后进行left join操作。这样扩充几倍,就会分配几个reduce。
Apache Spark 自 2010 年面世,到现在已经发展为大数据批计算的首选引擎。而在 2020 年 6 月份发布的Spark 3.0 版本也是 Spark 有史以来最大的 Release,其中将近一半的 issue 都属于 SparkSQL。这也迎合我们现在的主要场景(90% 是 SQL),同时也是优化痛点和主要功能点。我们 Erda 的 FDP 平台(Fast Data Platform)也从 Spark 2.4 升级到 Spark 3.0 并做了一系列的相关优化,本文将主要结合 Spark 3.0 版本进行探讨研究。
本文从数据倾斜的危害、现象、原因等方面,由浅入深阐述Spark数据倾斜及其解决方案。
hive强大之处不要求数据转换成特定的格式,而是利用hadoop本身InputFormat API来从不同的数据源读取数据,同样地使用OutputFormat API将数据写成不同的格式。所以对于不同的数据源,或者写出不同的格式就需要不同的对应的InputFormat和OutputFormat类的实现。以stored as textFile为例,其在底层java API中表现是输入InputFormat格式:TextInputFormat以及输出OutputFormat格式:HiveIgnoreKeyTextOutputFormat。这里InputFormat中定义了如何对数据源文本进行读取划分,以及如何将切片分割成记录存入表中。而OutputFormat定义了如何将这些切片写回到文件里或者直接在控制台输出。
前面《Spark SQL / Catalyst 内部原理 与 RBO》与《Spark SQL 性能优化再进一步 CBO 基于代价的优化》介绍的优化,从查询本身与目标数据的特点的角度尽可能保证了最终生成的执行计划的高效性。但是
当一个大表和一个或多个小表做JOIN时,最好使用MAPJOIN,性能比普通的JOIN要快很多。另外,MAPJOIN 还能解决数据倾斜的问题。MAPJOIN的基本原理是:在小数据量情况下,SQL会将用户指定的小表全部加载到执行JOIN操作的程序的内存中,从而加快JOIN的执行速度。
本文介绍了Hive数据倾斜问题及其解决方案,包括使用Combine、Map端Join、自定义Partitioner等方法。同时,还介绍了如何诊断数据倾斜以及Hive数据倾斜的解决方案。通过合理的设计和优化,可以有效地解决Hive数据倾斜问题,提高数据处理的效率。
Spark中的数据倾斜问题主要指shuffle过程中出现的数据倾斜问题,是由于不同的key对应的数据量不同导致的不同task所处理的数据量不同的问题。
通常认为当所有的map task全部完成,并且99%的reduce task完成,只剩下一个或者少数几个reduce task一直在执行,这种情况下一般都是发生了数据倾斜。
一般都发生在Sql中group by和join on上,而且和数据逻辑绑定比较深。
在当今数据驱动的时代,大数据处理技术如Apache Spark已经成为企业数据湖和数据分析的核心组件。然而,在处理海量数据时,数据倾斜问题成为了一个难以忽视的挑战,它不仅会显著降低数据处理效率,甚至可能导致任务失败。本文将深入探讨数据倾斜的概念、产生原因、识别方法,并通过一个现实案例分析,介绍如何在Apache Spark中有效解决数据倾斜问题,辅以代码示例,帮助读者在实践中应对这一挑战。
Spark 中的数据倾斜问题主要指shuffle过程中出现的数据倾斜问题,是由于不同的key对应的数据量不同导致的不同task所处理的数据量不同的问题。
一、调优概述 二、数据倾斜发生时的现象 三、数据倾斜发生的原理 四、如何定位导致数据倾斜的代码 五、某个task执行特别慢的情况 六、某个task莫名其妙内存溢出的情况 七、查看导致数据倾斜的key的数据分布情况 八、数据倾斜的解决方案:
在大数据处理过程中常常出现数据倾斜(Data Skew)。那么,数据倾斜会造成什么问题呢?为什么要处理数据倾斜?
可以在右侧搜索框中填对应application号找到任务,然后点击对应的application号链接,如下图所示:
有的时候,我们可能会遇到大数据计算中一个最棘手的问题——数据倾斜,此时Spark作业的性能会比期望差很多。数据倾斜调优,就是使用各种技术方案解决不同类型的数据倾斜问题,以保证Spark作业的性能。
原理:在进行shuffle的时候,须将各个节点上相同的key拉取到某个节点上的一个task来进行处理,比如按照key进行聚合或join等操作。此时如果某个key对应的数据量特别大的话,就会发生数据倾斜。比如大部分key对应10条数据,但是个别key却对应了100万条数据,那么大部分task可能就只会分配到10条数据,然后1秒钟就运行完了;但是个别task可能分配到了100万数据,要运行一两个小时。因此,整个Spark作业的运行进度是由运行时间最长的那个task决定的。
前言 继基础篇讲解了每个Spark开发人员都必须熟知的开发调优与资源调优之后,本文作为《Spark性能优化指南》的高级篇,将深入分析数据倾斜调优与shuffle调优,以解决更加棘手的性能问题。 数据倾斜调优 调优概述 有的时候,我们可能会遇到大数据计算中一个最棘手的问题——数据倾斜,此时Spark作业的性能会比期望差很多。数据倾斜调优,就是使用各种技术方案解决不同类型的数据倾斜问题,以保证Spark作业的性能。 数据倾斜发生时的现象 绝大多数task执行得都非常快,但个别task执行极慢。比如,总共有1
Hive在执行MapReduce任务时经常会碰到数据倾斜的问题,表现为一个或者几个reduce节点运行很慢,延长了整个任务完成的时间,这是由于某些key的条数比其他key多很多,这些Key所在的reduce节点所处理的数据量比其他节点就大很多,从而导致某几个节点迟迟运行不完。
上篇文章给大家分享了前10个spark的企业面试题2020年最新Spark企业级面试题【上】,今天后续来了,来分享剩下的那个几个面试题。也祝大家找到自己喜欢的工作,一起加油,编写不易 请给老哥一个一键三连吧。
数据倾斜的原理很简单:在进行shuffle的时候,必须将各个节点上相同的key拉取到某个节点上的一个task来进行处理,比如按照key进行聚合或join等操作。此时如果某个key对应的数据量特别大的话,就会发生数据倾斜。比如大部分key对应10条数据,但是个别key却对应了100万条数据,那么大部分task可能就只会分配到10条数据,然后1秒钟就运行完了;但是个别task可能分配到了100万数据,要运行一两个小时。因此,整个Spark作业的运行进度是由运行时间最长的那个task决定的。
MapReduce是apache公司开发的,基于该框架能够使应用程序能够运行在大规模集群上,并以一种可靠的,具有容错能力的方式并行地处理上TB级别的海量数据集。MapReduce的思想就是“分而治之”,Mapper负责“分”,即把复杂的任务分解为若干个“简单的任务”来处理;Reducer负责对map阶段的结果进行汇总。
Spark中的内存使用分为两部分:执行(execution)与存储(storage)。
解决方案:避免数据源的数据倾斜 实现原理:通过在Hive中对倾斜的数据进行预处理,以及在进行kafka数据分发时尽量进行平均分配。这种方案从根源上解决了数据倾斜,彻底避免了在Spark中执行shuffle类算子,那么肯定就不会有数据倾斜的问题了。 方案优点:实现起来简单便捷,效果还非常好,完全规避掉了数据倾斜,Spark作业的性能会大幅度提升。 方案缺点:治标不治本,Hive或者Kafka中还是会发生数据倾斜。 适用情况:在一些Java系统与Spark结合使用的项目中,会出现Java代码频繁调用Spark作业的场景,而且对Spark作业的执行性能要求很高,就比较适合使用这种方案。将数据倾斜提前到上游的Hive ETL,每天仅执行一次,只有那一次是比较慢的,而之后每次Java调用Spark作业时,执行速度都会很快,能够提供更好的用户体验。 总结:前台的Java系统和Spark有很频繁的交互,这个时候如果Spark能够在最短的时间内处理数据,往往会给前端有非常好的体验。这个时候可以将数据倾斜的问题抛给数据源端,在数据源端进行数据倾斜的处理。但是这种方案没有真正的处理数据倾斜问题。
领取专属 10元无门槛券
手把手带您无忧上云