数据仓库(数仓)与大数据区别,数据仓库(数仓)与数据库的区别,大数据与传统数据库的区别等等,这篇文章带你了解。
回顾数据仓库的发展历程,大致可以将其分为几个阶段:萌芽探索到全企业集成时代、企业数据集成时代、混乱时代--"数据仓库之父"间的论战、理论模型确认时代以及数据仓库产品百家争鸣时代。查看原文
1.概念方面.数据库:是一种逻辑概念,用来存放数据的仓库。通过数据库软件来实现。数据库由很多表组成,表是二维的,一张表里可以有很多字段。字段一字排开,对应的数据就一行一行写入表中。数据库的表,在于能够用二维表现多维关系。目前市面上流行的数据库都是二维数据库。如:Oracle、DB2、MySQL、Sybase、MS SQL Server等。
1.如有错误欢迎大家指出,我会及时更正,有什么不懂也可以留言提问,互相交流吗。 2.也许大家觉得这没什么,但是我会认真对待,把它当成我的笔记、心得、这样才能提升自己。
大家都知道,企业要做数据分析,商业智能BI和数据仓库二者缺一不可。许多人在疑惑,我的数据仓库还没有建立起来,怎么做商业智能BI呢?真得在做商业智能BI之前先建数据仓库吗?
现在越来越多的企业开始使用商业智能BI软件,用来整合企业中现有的各种数据,对这些数据按照不同的需求进行处理分析,并快速准确地形成分析报告,为企业决策提供数据支持,帮助企业做出明智的业务经营决策。
根据Google的说法,对“大数据”的兴趣已经持续了好几年,而且在过去几年里真正的兴起。这篇文章的目的是为了帮助突出数据湖泊和数据仓库之间的差异,帮助您就如何管理数据做出明智的决定。
最近群里很多小伙伴都问了数据库和数据仓库的区别是什么,因此将之前写过的文章给大家再分享一遍。
任何需求均来源于业务 , 业务决定了需求 , 需求分析的正确与否是关系到项目成败的关键所在 , 从任何角度都可以说项目是由业务驱动的所以数据仓库项目也是由业务所驱动的 。
汇总各种来源的数据,可以创建一个中央仓库。通过分析和汇总业务数据报告,数据仓库能够帮助企业做出明智、战略性的决策分析。虽然数据仓库提供了许多便利,但是把这些敏感数据收集到一个单独系统,会给数据仓库带来安全问题。 如果选择使用数据仓库,企业需要考虑如何更好地保护内部信息系统。任何数仓安全方面的妥协都会给入侵者或网络罪犯以可乘之机,造成销售、营销、客户信息等业务数据的毁坏泄露。今年爆发的WannaCry勒索软件事件也表明了这一点,现代企业需要严格规避数据犯罪。 在数据仓库中,最常见的数据库管理系统应该是开源My
马云老师在2019年说了一段话,“很多人会把数据比作石油,我们现在搭建的数据中台,就是希望扮演发电厂的角色”,这一段话,现在被大众认为是“数据中台”这个概念的起源。
2021年8月20日,贵州农信行社数据仓库软硬件采购项目单一来源采购公示发布。 拟采购商品信息:行社数据仓库软硬件(GaussDB数据库及大数据软件License部分) 采用单一来源采购方式的原因及相关说明:大数据平台由贵安迁移至观山湖数据中心时,使用了华为泰山服务器和大数据产品,用于搭建观山湖数据中心大数据平台。现由于数据量增长大数据平台需进行扩容,鉴于后续应用扩展及行社数仓项目建设,为保持服务延续性及前后软硬件产品的一致性,同时考虑到系统兼容性,便于投产后运维,拟继续采购华为系列产品用于扩容大数据平台
目前市面上的BI工具都在提及敏捷BI解决方案。敏捷BI解决方案所提供的自动化技术支持主要是从数据源取数到BI前端工具展现。这样的敏捷BI解决方案在企业数据量不是很庞大的情况下,还是很好的支撑运行。PowerBI可以支持大量的数据处理,但是对于硬件设备的要求也是非常高的。但是数据量变得越来越庞大就会导致BI报表出现运行缓慢,大屏展现出现数据延迟等等现象。
预计到2025年,全球数据量将增长至180ZB,企业必须处理两个主要问题——在哪里存储数据以及如何使用数据。数据仓库自20世纪80年代以来就已经存在,并且其功能不断扩展,可以帮助应对这两个挑战。然而,根据独立市场研究公司VansonBourne的研究,无论技术成熟度如何,而且数据仓库通常由专家开发,失败项目的比例仍然高居不下。
为适应数据应用需求,大数据平台架构持续演进,历经数据仓库、数据湖两个阶段。2020年,湖仓一体概念提出,湖仓一体架构因能实现数据资产统一管理、降低数据冗余、降低大数据平台架构运维复杂性,将成为大数据平台的主流架构。
数据仓库,英文名称为Data Warehouse,可简写为DW或DWH。数据仓库,是为企业所有级别的决策制定过程,提供所有类型数据支持的战略集合。它出于分析性报告和决策支持目的而创建。为需要业务智能的企业,提供指导业务流程改进、监视时间、成本、质量以及控制。
OLTP(On-Line Transaction Processing):联机事务处理
【CSDN现场报道】2015年12月10-12日,由中国计算机学会(CCF)主办,CCF大数据专家委员会承办,中国科学院计算技术研究所、北京中科天玑科技有限公司与CSDN共同协办,以“数据安全、深度分析、行业应用”为主题的 2015中国大数据技术大会 (Big Data Technology Conference 2015,BDTC 2015)在北京新云南皇冠假日酒店盛大开幕。 2015中国大数据 技术大会首日全体会议中,星环科技创始人兼CTO孙元浩带来了名为“现代数据仓库的技术演变和关键特性”的主题演讲。
组成的 完整的 “数据环境” ; 并在该 “数据环境” 上建立 和 进行 企业 或 组织 的从
数据,对一个企业的重要性不言而喻。如何利用好企业内部数据,发挥数据的更大价值,对于企业管理者而言尤为重要。作为最传统的数据应用之一,数据仓库在企业内部扮演着重要的角色。构建并正确配置好数据仓库,对于数据分析工作至关重要。一个设计良好的数据仓库,可以让数据分析师们如鱼得水;否则是可能使企业陷入无休止的问题之后,并在未来的企业竞争中处于劣势。随着越来越多的基础设施往云端迁移,那么数据仓库是否也需要上云?上云后能解决常见的性能、成本、易用性、弹性等诸多问题嘛?如果考虑上云,都需要注意哪些方面?目前主流云厂商产品又有何特点呢?面对上述问题,本文尝试给出一些答案,供各位参考。本文部分内容参考了MIT大学教授David J.DeWitt的演讲材料。
数据无论是对于我们个人来说,还是对于公司来说,都是非常重要的。那么,如何储存数据也是许多公司面临的问题,直接数据既要保证安全性,又要保证我们在储存的时候便捷性,访问的时候也需要快速响应。那么有什么样的方式能够储存这样如此庞大的数据量呢?在云数据仓库 Snowflake,提出云数据库概念之前,大部分的企业都会使用传统数据库来解决这一难题。那么,云数据仓库的意义是什么呢?
在过去三年,Hadoop生态系统已经大范围扩展,很多主要IT供应商都推出了Hadoop连接器,以增强Hadoop的顶层架构或是供应商自己使用的Hadoop发行版。鉴于Hadoop的部署率呈指数级的增长
我们中的一些人更多地了解了数据湖,特别是在过去的六个月里。有些人告诉我们,数据湖只不过是数据仓库的转世,本着“去过那里”的精神,其他人则专注于这个“有光泽的,新的”数据湖有多好,而另一些则是站在海岸线尖叫,“不要进去!这不是一个湖 - 这是一个沼泽!“
元数据是指来自企业内外的所有物理数据和知识,包括物理数据的格式,技术和业务过程,数据的规则和约束以及企业所使用数据的结构。
大数据传统企业实施,其路漫漫,绝不会如昙花一现,探索大数据在传统行业的实施之路,寻找一条适合传统行业的企业大数据实施方法体系,是我执着坚守的信念,大数据是一种信仰,吾将上下而求索。记下项目中的点滴,算是日志,自勉。
数据,对一个企业的重要性不言而喻,如何利用好企业内部数据,发挥数据的更大价值,对于企业管理者而言尤为重要。作为最传统的数据应用之一,数据仓库在企业内部扮演着重要的角色,构建并正确配置好数据仓库,对于数据分析工作至关重要。一个设计良好的数据仓库,可以让数据分析师们如鱼得水;否则可能使企业陷入无休止的问题之中,并在未来的企业竞争中处于劣势。
商业智能软件可以收集、管理、分析和转化企业中现有的数据,使这些数据成为可用的信息。让企业更轻松地获取洞察力,帮助企业做出明智的经营决策。这些数据包括来自企业业务系统的订单、库存、交易账目、客户和供应商,还有来自行业和竞争对手的其他数据,以及来自其他外部环境的各种数据。商业智能软件辅助操作层的决策,也可以辅助战术层和战略层的决策。为了将数据转化为知识,商业智能软件涉及咨询服务、应用和信息技术的充分利用。其基本体系结构包括数据仓库、统计分析、数据挖掘三个部分。
导读:随着 IT 时代步入到 DT 时代,从数据中挖掘价值已经变得越来越重要。数据仓库系统长期以来一直是企业 IT 架构的重要组成部分,并且逐步与大数据等技术相融合,已然成为建设数据文化的智慧型企业的必然措施。
【编者注】一位热爱传媒、热爱大数据、热爱摄影的老师,沈浩老师(微博@沈浩老师 )以问答的方式给你阐述如何学习、如何学习好数据挖掘。 下面是一位朋友的问题,其实每天都有不少同学和朋友向我提问各种学习数据
1. 数据分析多层模型介绍 这个金字塔图像是数据分析的多层模型,从下往上一共有六层: 底下第一层称为Data Sources 元数据层。 比如说在生产线上,在生产的数据库里面,各种各样的数据,可能是银
看做什么,如果不需要对数据进行实时处理,那么大部分情况下都需要把数据从hbase/mysql(数据库)“导入”到hive(数据仓库)中进行分析。“导入”的过程中会做一些元数据转换等操作。 相关知识如下 数据仓库的几个概念 http://www.ppvke.com/Blog/archives/27862 什么是OLTP? 联 机事务处理系统(OLTP),也称为面向交易的处理系统,其基本特征是顾客的原始数据可以立即传送到计算中心进行处理,并在很短的时间内给出处理结果。也 称为实时系统(Real time S
所谓系统集成,就是通过结构化的综合对接系统和计算机网络技术,将各个分离的软件、硬件、功能和信息等集成到相互关联的、统一和协调的系统之中,使资源达到充分共享,实现集中、高效、便利的管理。系统集成应采用功能集成、网络集成、软件界面集成等多种集成技术。系统集成实现的关键在于解决系统之间的互连和互操作性问题,它是一个多厂商、多协议和面向各种应用的体系结构。这需要解决各类设备、子系统间的接口、协议、系统平台、应用软件等与子系统、建筑环境、施工配合、组织管理和人员配备相关的一切面向集成的问题。系统集成作为一种新兴的服务方式,是近年来国际信息服务业中发展势头最猛的一个行业。
当数据仓库可以处理非结构化数据,而数据湖可以运行分析时,组织如何决定使用哪种方法?这取决于其需要采用数据回答新问题的频率。 传统上,数据仓库收集来自组织业务的所有结构化数据,因此组织可以将其集成到单个
导读:从投资者的角度,西蒙迪斯将讨论数据分析的变革,认知应用的价值,以及最受风投关注的大数据核心领域。 在我的之前的一些博客中,我提到了生成认知的必要性和重要性,并提供了一个认知应用的例子。我始终认为认知应用是对于希望通过挖掘大数据从而改进决策和解决重要问题的公司的关键所在。为了更好的理解和领会开发这类应用的必要性,考虑在大数据领域正在发生什么,并且评估我们在商业智能系统上的经验,及它应该如何驱动我们理解认知应用是十分重要的。 由于我认为认知应用是大数据发展的下一个转折(参见最近使用IBM Watson平
随着信息时代的来临,数据已经成为现代社会的重要资产。无论是企业、科学研究还是政府机构,都在不断产生和积累大量数据。如何高效地存储、管理和分析这些数据,已经成为一个迫切需要解决的问题。本文将深入探讨大数据领域中两种关键的数据管理方法:数据湖(Data Lake)和数据仓库(Data Warehouse),并探讨它们如何融合以应对不断增长的数据挑战。
我的博客即将同步至腾讯云开发者社区,邀请大家一同入驻:https://cloud.tencent.com/developer/support-plan?invite_code=... 数据仓库存储来自
1. 面向主题:数据仓库集中存储围绕特定主题(如销售、客户、财务等)的数据,这些数据经过提炼,去除了操作型系统中的冗余和不一致性。
2021年,我们看到围绕现代数据栈的兴起出现了相当大的加速效应。我们现在有一个海啸般的通讯、影响者、投资者、专门的网站、会议和活动来宣扬它。围绕现代数据栈的概念(尽管仍处于早期阶段)与云中数据工具的爆炸性增长紧密相连。云计算带来了一种新的基础设施模式,它将帮助我们快速地、程序化地、按需地建立这些数据栈,使用像Kubernetes这样的云原生技术、像Terraform这样的基础设施即代码以及DevOps的云计算最佳实践。因此,基础设施成为构建和实施现代数据栈的一个关键因素。
比如说在生产线上,在生产的数据库里面,各种各样的数据,可能是银行的业务数据,也可能是电信运营商在交换机里面采集下来的数据等等,然后这些生产的数据通过ETL,是英文 Extract-Transform-Load 的缩写,用来描述将数据从来源端经过抽取(extract)、转换(transform)、加载(load)至目的端的过程,通过这个过程,我们可以把需要的数据放到数据仓库里面,那这个数据仓库就是多层模型中的第二层。
大家好,不管是离线数仓与实时数仓,建设的时候都少不了架构设计,今天来学习一下常见的架构及发展演变过程。
Inmon将数据仓库描述为一个面向主题的、集成的、随时间变化的、非易失的数据集合,用于支持管理者的决策过程。
2021年8月17日,天津农商银行发布《数据仓库Netezza替换项目-国产化数据库软件项目》单一来源采购的公示: 拟采购内容:采购数据库集群系统 GBase 8a MPP Cluster软件 拟采购供应商名称:天津南大通用数据技术股份有限公司 申请理由:结合此前我行对多家国产分布式数据库的POC测试结果,为了保证我行能采购到理想的国产数据库软件,我行将与天津南大通用数据技术股份有限公司进行单一来源采购。 2021年8月10日,天津农商银行发布《数据仓库迁移项目》单一来源采购的公示: 拟采购内容:数据仓库迁
2021年,我们看到围绕现代数据栈的兴起出现了相当大的加速效应。我们现在有一个海啸般的通讯、影响者、投资者、专门的网站、会议和活动来宣扬它。围绕现代数据栈的概念(尽管仍处于早期阶段)与云中数据工具的爆炸性增长紧密相连。云计算带来了一种新的基础设施模式,它将帮助我们快速地、程序化地、按需地建立这些数据栈,使用像Kubernetes这样的云原生技术、像Terraform这样的基础设施即代码以及DevOps的云计算最佳实践。因此,基础设施成为构建和实施现代数据栈的一个关键因素。 当我们已经进入2022年,我们可以
ETL代表提取、转换和加载。它是从任何数据源中提取数据并将其转换为适当格式以供存储和将来参考的过程。
在当今数据驱动的商业世界中,高效、灵活的数据管理成为企业成功的关键。数据仓库和数据湖,作为数据存储和处理的两种主流技术,分别扮演着独特而重要的角色。
大数据文摘作品,转载要求见文末 作者 | Maxime Beauchemin 编译团队 | Yawei Xia,邱猛,赖小娟,张礼俊 2011的时候年我以商业智能工程师的身份加入脸书(Facebook),但在13年离开时我的职位却是数据工程师。这期间我并没有升职也没有被调到一个新职位上,我只是意识到我们的工作已经超越了传统商业智能的范畴,并且我们为自己创造的这个角色属于一个全新的领域。 由于我的团队处在这种转变的最前沿,我们正在培养新的技能、新的做事风格、开发新工具,并基本放弃了旧有的方法。我们是这个领
经过多年来企业信息化建设,大部分都拥有了自己的财务,OA,CRM 等软件。这些系统都有自己的独立数据库,记录着企业运行情况某个方面的数据。但是单独看这些系统的报表,并不一定能对企业运行情况有全面客观的了解。就像只凭身高不能判断一个人是否健康,所以体检的时候我们需要化验许多指标,做各种检测,就是为了对身体情况有更全面的了解,作出更准确的判断。 同样对一个企业,不能仅根据出勤率就判断一个人的绩效高低,因为你不知道他的工作成果情况。仅根据财务报表输入支出也体现不了各部门的收益情况,这个部门有多少工作人员,完成了哪
ETL,是英文 Extract-Transform-Load 的缩写,用来描述将数据从来源端经过抽取(extract)、转换(transform)、加载(load)至目的端的过程。ETL 是构建数据仓库的重要一环,用户从数据源抽取出所需的数据,经过数据清洗,最终按照预先定义好的数据仓库模型,将数据加载到数据仓库中去。我们在下方列出了 7 款开源的 ETL 工具,并讨论了从 ETL 转向“无 ETL”的过程,因为 ELT 正迅速成为现代数据和云环境的终极过程。
很长一段时间,BI和数据仓库几乎都是如影随形、难舍难分。企业如果想要实行“数据驱动决策-决策推动业务发展”的机制,就必须先有数据仓库充当中央存储库,供BI查询和调取,然后再在BI上进行数据的分析与可视化。
在之前的课程中,我们已经学习了基础的网络知识,IP地址的知识,网络存储和网络接入相关的知识。是感觉到意犹未尽呢?还是想赶紧远离这个大魔王赶紧学习其它的内容呢?别急,我们还差最后的一点东西没说完。
领取专属 10元无门槛券
手把手带您无忧上云