如何使用 Deepfakes换脸 1.获取deepfakes工具包 git clone https://github.com/deepfakes/faceswap.git 2.补齐依赖包: pip install...做这个的原因是因为我们主要关注的是换脸,所以只需要获取脸部的特征,其他环境因素对换脸的影响并不大。 在面部抓取的过程完成后,我们可以得到所有脸部图片。...5.转换人脸 在训练完模型后(损失值较低),可以使用以下命令对目标图进行换脸: ....最后将转换后的人脸图片集合,合成一个视频: ffmpeg –i video-frame-%0d.png -c:v libx264 -vf “fps=25, format=yuv420p” out.mp4 下面是两个换脸图...这样最后我们用图片B获取到的脸,使用encoder抽取特征,再使用A的decoder还原,便会得到A的脸,B的表情。
做这个的原因是因为我们主要关注的是换脸,所以只需要获取脸部的特征,其他环境因素对换脸的影响并不大。 ? 在面部抓取的过程完成后,我们可以得到所有脸部图片。...在训练完模型后(损失值较低),可以使用以下命令对目标图进行换脸: ? 此处的例子是找的一个视频,所以我们可以先用下面的命令将一个视频以一个固定频率转化为图片: ? 然后执行转换人脸操作。...下面是两个换脸图(样本A 110张图片,样本B 70张图片,训练时间6小时): ? ? 嗯…效果不咋样… 建议大家可以增大样本量,并延长训练时间。 ? 转换人脸的过程 ?...这样最后我们用图片B获取到的脸,使用encoder抽取特征,再使用A的decoder还原,便会得到A的脸,B的表情。
Pine 发自 凹非寺 量子位 | 公众号 QbitAI DeepFake被用到了电信诈骗里,该怎么破? 让他转过头,看看他的侧脸就好了。...外网有这么一篇文章,解析了为什么在侧脸的情况下,面部伪造的效果大打折扣。 侧脸失真的原因 横向限制 使用DeepFake换脸,当人脸是侧角度时,真实性会急剧下降。...△在换脸寡姐和X教授时,手和面部叠加发生错乱 实时的DeepFake都会面临这样一个问题:需要将真实的遮挡物叠加到不真实的面部图像上,一般称这个操作为“遮罩”或“背景去除”。...One More Thing 换脸犯罪并不遥远,已经有媒体报道过有嫌疑犯通过DeepFake换脸进行IT工作的远程面试,以试图侵入公司,获取他们的客户或财务数据,以及企业IT数据和专业信息等。...在联邦机构5月份报告中描述的案例中,一些换脸嫌疑人通过几层空壳公司进行操作,这使得识别他们的身份变得更加困难。
样例1 输入参考图像(一定要带脸) 2 输入提示词(不要输入中文,请输入英文) a man, suit 3 输入参考姿势图像(可选项) 输入的Pose姿势图像,可以调整生成图像的面部姿势(朝向) 4
AI 换脸实现 科普:我们人眼看到连续画面的帧数为 24 帧,大约 0.04 秒,低于 0.04 就会卡成 ppt。...usr/bin/python # -*- coding: utf-8 -*- # @Time : 2019/9/1 8:50 # @Author : cuijianzhe # @File : AI换脸...faces[0] rectangle = list0['face_rectangle'] # print(rectangle) return rectangle #number表示换脸的相似度...faces[0] rectangle = list0['face_rectangle'] # print(rectangle) return rectangle #number表示换脸的相似度...不过目前是实现了从宋祖儿---> 朴信惠换脸术, ---- 标题:python 实现 AI 换脸 作者:cuijianzhe 地址:https://solo.cjzshilong.cn/articles
做这个的原因是因为我们主要关注的是换脸,所以只需要获取脸部的特征,其他环境因素对换脸的影响并不大。 在面部抓取的过程完成后,我们可以得到所有脸部图片。...转换人脸 在训练完模型后(损失值较低),可以使用以下命令对目标图进行换脸: ....最后将转换后的人脸图片集合,合成一个视频: ffmpeg –i video-frame-%0d.png -c:v libx264 -vf “fps=25, format=yuv420p” out.mp4 下面是两个换脸图...这样最后我们用图片B获取到的脸,使用encoder抽取特征,再使用A的decoder还原,便会得到A的脸,B的表情。
AI实现视频换脸的方案也越来越多,所以博主挑了其中一个方向来学习,介绍。博主选择的是 faceswap,一个开源的视频换脸模型。...利用深度学习算法和人脸识别技术,获取正常人脸照片、扭曲变换人脸照片、Encoder编码向量、Decoder解码向量、还原正常人脸照片等步骤,实现换脸效果。
AI 换脸又一次刷爆了朋友圈 最近云毕业正当时,各家科技公司顺势推出了自己的 AI 换脸技术,结果又被同学们玩坏了! 换脸这件事绝不能少了业界大佬们! ?...仔细来看,AI 换脸技术近些年还是成熟不少,整体的面部贴合度、细节处理都有了明显的提升。近日,Deepfake 领域再一次取得了重要突破。...局部融合更考验换脸的技术难度。为了验证算法性能,研究人员他们没有对人脸的眼部、唇部等局部器官进行了融合,效果也是非常惊人。 ?...除了替身演员的全脸交换外,如需要刻画一位年龄逐渐增长的人物或已经进入垂暮之年的老人,可以根据需要为角色添加细微皱纹、发型和体态。...基于梳状模型的最新算法 那么这项 AI 换脸技术是如何实现的呢?我们先来看一组完整的换脸路径图: ?
Deepfake 就是前一阵很火的换脸 App,从技术的角度而言,这是深度图像生成模型的一次非常成功的应用,这两年虽然涌现出了很多图像生成模型方面的论文,但大都是能算是 Demo,没有多少的实用价值,除非在特定领域...一、基本框架 我们先看看 Deepfake 到底是个何方神圣,其原理一句话可以概括:用监督学习训练一个神经网络将张三的扭曲处理过的脸还原成原始脸,并且期望这个网络具备将任意人脸还原成张三的脸的能力。...人脸识别问题 由于第一个环节是对人脸做预处理,算法必须首先能识别出人脸,然后才能处理它,而 dlib 中的人脸检测算法,必须是「全脸」,如果脸的角度比较偏就无法识别,也就无法「换脸」。...也就是说同一张人脸图片,让他合成大于自己的或小于自己的脸都是有道理的,另外当人脸角度变化较大时,这种抖动就会更明显。...我不禁联想到了 Nvidia 的那篇论文,没有条件的 Gan 虽然可以生成高清的图片,但是没法人为控制随机因子 z,无法指定具体要生成生成什么样的脸,而有条件的 Gan 样本又过于昂贵。
需要用到的接口: 获取人脸信息的接口:https://api-cn.faceplusplus.com/facepp/v3/detect 实现换脸的接口 :https://api-cn.faceplusplus.com...= res_json['faces'] list = faces[0] rectangle = list['face_rectangle'] return rectangle #第二步:实现换脸...: 换脸的图片路径 :param image_url: 换脸后生成图片所保存的路径 :param number: 换脸的相似度 """ #首先获取两张图片的人脸关键点 face1 = find_face...要换的脸: ? 换脸后: ?...总结 到此这篇关于Python实现AI换脸的代码的文章就介绍到这了,更多相关Python实现AI换脸内容请搜索ZaLou.Cn以前的文章或继续浏览下面的相关文章希望大家以后多多支持ZaLou.Cn!
最早之前,实现人脸互换是通过分别分析两者人脸的相似信息来实现换脸,也就是通过特征点匹配来提取一张脸中例如眉毛、眼睛等特征信息然后匹配到另一张人脸上。...关于更多自编码器的知识:理解深度学习:与神经网络相似的网络-自编码器(上) 网络构架 那么应该如何通过自编码器实现我们的换脸技术呢?...如上图,假如我们仅仅是简单地将两张不同的脸的集合扔到自编码网络中,然后挑选一个损失函数去训练,但这样去训练我们是什么也得不到的,因此我们需要重新设计一下我们的网络。 怎么设计呢?...总之,我们想实现换脸的操作,在整体结构不变的基础上,需要满足以下几点: 如上图,也就是类似于VGG的编码网络、还要可以打乱空间结构结构的全连接网络、以及可以快速且较好地上采样图像的Sub-Pixel网络...总结 总得来说,这个换脸技术是一个结构简单但是知识点丰富的一个小项目,其结构简单易于使用以及修改,并且可以生成不错的效果,但是因为其拥有较多的参数,其运行速度并不是很快(当然我们可以通过改变编码层和解码层结构加快训练生成的速度
从视频发布以后的好几个星期,网络上不断有人发表文章和报道,抨击这一“换脸”技术,称这种技术将会对社会产生很多负面的影响。...利用DeepFakes技术,你只需要一个GPU和一些训练数据,就能够制作出以假乱真的换脸视频。...DeepFakes的出现还意味着我们可以在视频中进行大规模的“换脸”。我们大多数人都曾经把自己的照片上传到网络上,因此,我们大多数人的脸都能够轻易地被替换到一些视频中,成为视频的“主角”。...那么接下来,让我们一起看看DeepFakes究竟是怎么做到的。...等到以上的训练步骤都完成以后,我们就能把一张Jimmy的照片输入至编码器,然后直接把代码传输至解码器B,将Jimmy的脸换成Oliver的脸。 ? 这就是我们通过训练模型完成换脸的全过程。
相关文章:AI 换脸技术——DeepFakes 概述(一) DeepFakes的“短板” 尽管DeepFakes所呈现出的结果让人很惊讶,但就现在来说,它的局限性还是很明显的: 首先,DeepFakes...如果要用另外一个人的脸替换视频中的脸,那么你需要300到2000张这个人的人脸图片。所需图片的数量取决于人脸的变化程度,以及它们与原始视频的匹配程度。...因此视频换脸比较适用于艺人,或者是那些在网上有大量照片的人。所以很明显,并不是任何人的人脸交换都是这么简单的。 其次,训练的数据必须要选择非常有代表性的图片。...DeepFakes的另一局限性在于,建立一个换脸模型会消耗大量的时间和金钱。一般的换脸效果大概需要48小时的训练,而一个相对不错的换脸则需要大约72小时的训练才能达到。...如果你使用Jimmy和Oliver人脸训练得到的模型,尝试将Kimmel的脸换成Oliver的脸,结果通常都是不乐观的。
讲到换脸这种技术,在很早以前,网上流传着一句话,叫做有图有真相, 直到PS把人脸完美的换掉的时候,大家就觉得图片也许并不能代表真相,而代表真相的也许就剩下视频了。 ?...可是当时据制片方说,换脸的成本太高,投资2亿美元的速7才拍了一半,面临进退两难,不过结果大家也看到了。 ?...这一技术出世后,被大量用到了明星换脸上。 ? ? 当然这项技术诞生后,立马遭到大量网络用户抨击,因为换脸技术, 可能会导致特别多的虚假视频出现,虚假新闻也会随之而来, 包括污蔑和诽谤的视频。...现在只需要在B站搜索AI换脸,已经有许多的成品视频了, 有兴趣的话可以去搜索看一看。 任何一个新兴的技术诞生,都意味着科技的进步, 也许以后我们还可以看到李小龙的电影, 如果技术足够成熟的话。
0 前言 当前基于深度学习的人工智能的换脸技术比较多,但实际上,对于一些相同角度、相似肤色换脸场景其实无须通过深度学习模型即可达到比较好的效果。...本文基于OpenCV针对相同脸部角度、相似肤色场景实现完美换脸。...最终效果如下所示(下图为动态图,读者可以仔细观察脸部变化过程): [相互换脸效果] 1 原理 原理如下: 查找脸部关键点 获取关键点凸包,并对凸包点计算delanauy三角形。...dlib可以检测人脸68个关键点,如下所示: [68个关键点] 3 delanauy三角形 得到68个关键点后无法直接贴脸,因为每个人的脸型大小不一致。...公众号聊天界面回复:换脸 获取完整源码。 如果您觉得本文有帮助,辛苦您点个不需花钱的赞,您的举手之劳将对我提供了无限的写作动力! 也欢迎关注我的公众号:Python学习实战, 第一时间获取最新文章。
那么,网络域名的买卖和平常的商品交易有什么不一样呢,如果需要购买网络域名,我们该怎么买网络域名,买域名贵吗? image.png 买网络域名,登录正规买卖平台 怎么买网络域名?...买网络域名,价格影响因素是什么 怎么买网络域名,价格贵不贵?购买域名时,除了购买渠道外,最受关注的问题就是价格了。...怎么买网络域名?在买域名的时候,我们需要提前了解购买渠道,更重要的是提前明确我们所需要的域名具体是使用几年、需要新域名还是老域名,因为这直接决定着最后的购买价格。
FaceFusion是一款可以直接换脸的项目,支持图片换脸和视频换脸,且不需要进行模型训练,是roop项目的迭代项目。...gradio.Blocks) -> None: ui.launch(show_api = False, server_name='0.0.0.0') DNN库版本不一致 上传图片和视频后运行换脸报错...右侧PREVIEW部分是换脸的预览图片效果。...右侧的REFERENCE FACE DISTANCE部分是原图和目标素材中的人脸相似程度,用的是欧式距离,值越小表示两者越相似,可以根据实际的相似情况调节该值让换脸更逼真。...默认情况下的换脸后会出现脸部模糊的现象,可以勾选左侧上方的face_enhancer,可以让脸部更高清。
机器之心发布 作者:冯沁原 不久之前,AV 视频换脸明星的 DeepFake 火了。这篇文章将一步步教你如何实现换脸。...因为视频是连续的图片,那么我们只需要把每一张图片中的脸切换了,就能得到变脸的新视频了。那么如何切换一个视频中的图片呢? 这需要我们 首先找到视频中的脸,然后把脸进行切换。...它将人脸分成了如下的区域: 眼睛 (左/右) 眉毛 (左/右) 鼻子 嘴 下巴 基于这些标记,我们不仅能够进行后续的换脸,也能检测脸的具体形态,眨眼状态等。...这样当你用 B 的脸通过 编码器,再使用 A 的解码器的话,你会得到一个与 B 的表情一致,但是 A 的脸。...padding='same', activation='sigmoid')(x) return KerasModel(input_, x) 整个网络的结构如下: 来源: 刷爆朋友圈的视频人物换脸是怎样炼成的
traceback import cv2 import dlib import numpy as np class TooManyFaces(Exception): ''' 定位到太多脸...self.RIGHT_BROW_POINTS + self.NOSE_POINTS + self.MOUTH_POINTS) # 来自第二张图(脸)...def resize(self, im_head, landmarks_head, im_face, landmarks_face): ''' 根据头照片和脸照片的大小...''' 主函数 人脸交换 head_name: 头资源的键名字符串 face_path: 脸来源的图像路径名...=================== if __name__ == '__main__': ''' 命令行运行: python faceswapper.py <脸路径
领取专属 10元无门槛券
手把手带您无忧上云