# 根据条件过滤行 df_filtered = df[df['column_name'] > 5] # 按单列对DataFrame进行排序 df_sorted = df.sort_values('column_name...# 将df中的行添加到df2的末尾 df.append(df2) # 将df中的列添加到df2的末尾 pd.concat([df, df2]) # 对列A执行外连接 outer_join = pd.merge...(df1, df2, on='A', how='outer'), axis =1) # 对列A执行内连接 inner_join = pd.merge(df1, df2, on='A', how='inner...') # 对列A执行左连接 left_join = pd.merge(df1, df2, on='A', how='left') # 对列A执行右连接 right_join = pd.merge(...df1, df2, on='A', how='right') / 07 / Pandas中的统计 Pandas提供了广泛的统计函数和方法来分析DataFrame或Series中的数据。
col1, col2]] # 以DataFrame形式返回多列 df.iloc[0] # 按位置选取数据 df.loc['index_one'] # 按索引选取数据 df.iloc[0,:] # 返回第一行...) # 返回每一列的标准差 数据合并: df1.append(df2) # 将df2中的行添加到df1的尾部 df.concat([df1, df2],axis=1) # 将df2中的列添加到df1的尾部...df1.join(df2,on=col1,how='inner') # 对df1的列和df2的列执行SQL形式的join 数据清理: df[df[col] > 0.5] # 选择col列的值大于0.5...([col1,col2], ascending=[True,False]) # 先按列col1升序排列,后按col2降序排列数据 df.groupby(col) # 返回一个按列col进行分组的Groupby...对象 df.groupby([col1,col2]) # 返回一个按多列进行分组的Groupby对象 df.groupby(col1)[col2] # 返回按列col1进行分组后,列col2的均值 df.pivot_table
col2降序排列数据 df.groupby(col) # 返回⼀个按列col进⾏分组的Groupby对象 df.groupby([col1,col2]) # 返回⼀个按多列进⾏分组的Groupby对象...df1.append(df2) # 将df2中的⾏添加到df1的尾部 df.concat([df1,df2],axis=1,join='inner') # 将df2中的列添加到df1的尾部,值为空的对应...⾏与对应列都不要 df1.join(df2.set_index(col1),on=col1,how='inner') # 对df1的列和df2的列执⾏SQL形式的join,默认按照索引来进⾏合并,如果...df1和df2有共同字段时,会报错,可通过设置lsuffix,rsuffix来进⾏解决,如果需要按照共同列进⾏合并,就要⽤到set_index(col1) pd.merge(df1,df2,on='col1...',how='outer') # 对df1和df2合并,按照col1,⽅式为outer pd.merge(df1,df2,left_index=True,right_index=True,how='outer
# 返回一个按列col进行分组的Groupby对象 df.groupby([col1,col2]) # 返回一个按多列进行分组的Groupby对象 df.groupby(col1)[col2].agg(....transform("sum") # 通常与groupby连用,避免索引更改 数据合并 df1.append(df2) # 将df2中的行添加到df1的尾部 df.concat([df1, df2],...axis=1,join='inner') # 将df2中的列添加到df1的尾部,值为空的对应行与对应列都不要 df1.join(df2.set_index(col1),on=col1,how='inner...') # 对df1的列和df2的列执行SQL形式的join,默认按照索引来进行合并,如果df1和df2有共同字段时,会报错,可通过设置lsuffix,rsuffix来进行解决,如果需要按照共同列进行合并...,就要用到set_index(col1) pd.merge(df1,df2,on='col1',how='outer') # 对df1和df2合并,按照col1,方式为outer pd.merge(df1
col2]]:以DataFrame形式返回多列 s.iloc[0]:按位置选取数据 s.loc['index_one']:按索引选取数据 df.iloc[0,:]:返回第一行 df.iloc[0,0]...], ascending=[True,False]):先按列col1升序排列,后按col2降序排列数据 df.groupby(col):返回一个按列col进行分组的Groupby对象 df.groupby...([col1,col2]):返回一个按多列进行分组的Groupby对象 df.groupby(col1)[col2]:返回按列col1进行分组后,列col2的均值 df.pivot_table(index...中的每一行应用函数np.max 数据合并 df1.append(df2):将df2中的行添加到df1的尾部 df.concat([df1, df2],axis=1):将df2中的列添加到df1的尾部 df1....join(df2,on=col1,how='inner'):对df1的列和df2的列执行SQL形式的join 数据统计 df.describe():查看数据值列的汇总统计 df.mean():返回所有列的均值
[col] 返回一维数组col的列 df[[col1, col2]] 作为新的数据框返回列 s.iloc[0] 按位置选择 s.loc['index_one'] 按索引选择 df.iloc[0,:] 第一行...,ascending=False) 将col2按降序对值排序 df.sort_values([col1,ascending=[True,False]) 将col1按升序排序,然后按降序排序col2 df.groupby...(col) 从一列返回一组对象的值 df.groupby([col1,col2]) 从多列返回一组对象的值 df.groupby(col1)[col2] 返回col2中的值的平均值,按col1中的值分组...(np.max,axis=1) 在每行上应用一个函数 加入/合并 df1.append(df2) 将df1中的行添加到df2的末尾(列数应该相同) df.concat([df1, df2],axis=...1) 将df1中的列添加到df2的末尾(行数应该相同) df1.join(df2,on=col1,how='inner') SQL类型的将df1中的列与df2上的列连接,其中col的行具有相同的值。
pd.concat([df1,df2]) 如果想要合并后忽略原来的索引,可以通过设置参数ignore_index=True,这样索引就可以从0到n-1自动排序了。...例如,将名称Class添加到刚创建的的标签上。...pd.concat( [df1,df2], keys = ['Year 1','Year 2'], names = ['Class',None], ) 如果要重置索引并将其转换为数据列...=0) # reset_index(level='Class') 4.列匹配和排序 concat()函数还可以将合并后的列按不同顺序排序。...虽然,它会自动将两个df的列对齐合并。但默认情况下,生成的DataFrame与第一个DataFrame具有相同的列排序。例如,在以下示例中,其顺序与df1相同。
sort: 按字典顺序通过连接键对结果DataFrame进行排序。默认为True,设置为False将在很多情况下显着提高性能。 suffixes: 用于重叠列的字符串后缀元组。...copy: 始终从传递的DataFrame对象复制数据(默认为True),即使不需要重建索引也是如此。...indicator:将一列添加到名为_merge的输出DataFrame,其中包含有关每行源的信息。...('data_2.xlsx') vlookup_data=pd.merge(df1,df2,how='inner') print(vlookup_data) vlookup_data=pd.merge...(df1,df2,how='inner') 如果是用 how=’inner’,是取交集 则可以看到【2019010 鸠摩智】与【2019011 丁春秋】两个数据丢失了 vlookup_data=
|删除行(条件) df.drop(df[df.金牌数<20].index) 19-数据删除|删除列 df.drop(columns=['比赛地点']) 20-数据删除|删除列(按列号) 删除df的7,8,9,10...和 df2 pd.concat([df1,df2]) 12 - concat|拼接多个 垂直拼接 df1、df2、df3,效果如下图所示 pd.concat([df1,df2,df3]) 13 - concat...df1.index) 17 - concat|新增索引 拼接 df1、df2、df3,同时新增一个索引(x、y、z)来区分不同的表数据来源 pd.concat([df1,df2,df3],keys=['...各列的数据类型 df1.info() 12 - 时间类型转换 将 df1 和 df2 的 日期 列转换为 pandas 支持的时间格式 df1['日期'] = pd.to_datetime(df1['...df1 的索引设置为日期,将 df1 数据向后移动一天 df1.set_index(['日期']).shift(1) 25 - 日期重采样|日 -> 周 按周对 df1 进行重采样,保留每周最后一个数据
要记住:从外观上看,堆栈采用表的二维性并将列堆栈为多级索引。 Unstack 取消堆叠将获取多索引DataFrame并对其进行堆叠,将指定级别的索引转换为具有相应值的新DataFrame的列。...Merge 合并两个DataFrame是在共享的“键”之间按列(水平)组合它们。此键允许将表合并,即使它们的排序方式不一样。...为了合并两个DataFrame df1 和 df2 (其中 df1 包含 leftkey, 而 df2 包含 rightkey),请调用: ?...例如,考虑使用pandas.concat([df1,df2])串联的具有相同列名的 两个DataFrame df1 和 df2 : ?...串联是将附加元素附加到现有主体上,而不是添加新信息(就像逐列联接一样)。由于每个索引/行都是一个单独的项目,因此串联将其他项目添加到DataFrame中,这可以看作是行的列表。
注意:调用不带列名列表的DataFrame将显示所有列(类似于SQL的 *)。...2.Where按条件查询 通过WHERE子句在SQL中进行过滤。 SELECT * FROM df WHERE 吃饭时间 = '晚餐' LIMIT 5; DataFrame可以通过多种方式进行过滤。...就像SQL的OR和AND一样,可以使用|将多个条件传递给DataFrame。|(OR)和&(AND)。...通过将一列列传递给方法,来完成按多个列分组groupby()。...(df1, df2, on='key') 结果如下: ?
为方便大家理解记忆,对每种数据结构的基本操作概括为四大类: 创建数据结构 往里面添加数据 从里面查询数据 对里面的数据进行修改 这篇文章我们将介绍数据框的使用 数据框 数据框是R语言中的一种类似于表格的数据结构...例如: # 访问df1数据框中的第一行 df1[1, ] # name age gender # 1 Alice 20 F # 访问df2数据框中的"score"列 df2["score...例如: # 访问df1数据框中的第一行的值 df1[[1]] # [1] "Alice" "Bob" "Charlie" # 访问df2数据框中的"score"列的值 df2$score #...例如: # 访问df1数据框中的第一列(一个向量)的第二个子元素 df1[[1]][2] # [1] "Bob" # 访问df2数据框中的"grade"列(一个向量)的第三个子元素 df2$grade...<- subset(df, select = -c(age)) cat("根据条件删除age列后的数据框:\n") print(df_deleted_age_column) # 根据条件删除age列后的数据框
df1.sort_values(by='B') # 将df转化为array df1.to_numpy() 04 一般的选择数据 # 直接获取数据 df1['A'] # 按照索引值切片行数据 df1...[0:3] # 按照索引名称切片行数据(首尾都可以获取) df1['20200501':'20200503'] 05 按标签选择数据 # 提取某行数据 df1.loc[dates[0]] # 按照标签选择多列数据...使用索引值位置选择 df1.iloc[3] # 使用切片的方式批量选择 df1.iloc[3:5, 0:2] # 使用索引值位置列表选择 df1.iloc[[1, 2, 4], [0, 2]] 07 按条件选择数据...# 用单列的值选择数据 df1[df1.A>0] # 选择df中满足条件的值(不满足会现实NaN) df1[df1>0] # 使用isin()选择 df2[df2['E'].isin(['test...df2[df2.E == 'test'] # 删除某列包含特殊字符的行 df2[~df2.E.str.contains('te')] # 取包含某些字符的记录 df2[df2.E.str.contains
df2 从工作目录中读取文件,否则可能出现报错 df2 图片 数据框属性 数据框属性 # dim(df1)...# nrow(df1) #输出行数 ncol(df1) #输出列数 # rownames(df1) #输出行名 colnames(df1) #输出列名 数据框取子集 数据主要操作为按列取子集,取出来的为向量...#4.数据框取子集 df1$gene #删掉score,按tab键试试 mean(df1$score) ## 按坐标 df1[2,2] # 取第二行第二列 df1[2,] #取第二行 df1[,2]...## 中括号中的逗号表示维度的分隔 ## 按名字 df1[,"gene"] df1[,c('gene','change')] ## 按条件(逻辑值) df1[df1$score>0,] ## 代码思维...列变行,行名和列名都跟着变换 as.data.frame(m) #将转换为数据框 #作图 pheatmap::pheatmap(m) #使用pheatmap包中的pheatmap函数做图,热图会先进行聚类
pd.concat([df1, df2], axis=0) 20....横向合并DataFrame pd.concat([df1, df2], axis=1) 使用方式: 沿着列方向合并两个DataFrame。 示例: 横向合并两个DataFrame。...pd.concat([df1, df2], axis=1) 21....示例: 使用“ID”列内连接两个DataFrame。 pd.merge(df1, df2, on='ID', how='inner') 22....示例: 将数据按天重新采样并求和。 df.resample('D').sum() 27.
print(df_1.describe())#数字总结 print(df_1.T)#数字反转 print(df_1.sort_index(axis=1,ascending=False))#axis等于按第一列排序...((3,4))*1,columns=['a','b','c','d'],index=[2,3,4]) print(df1) print(df2) res = pd.concat([df1,df2],axis...=1,join='outer')#行往外合并 print(res) res = pd.concat([df1,df2],axis=1,join_axes=[df1.index])#以df1的序列进行合并...=True)#将df2合并到df1下面并重置index print(res) res = df1.append(s1,ignore_index=True)#将s1合并到df1下面并重置index print...2,2,2]}) print(df1) print(df2) res = pd.merge(df1,df2,on='col1',how='outer',indicator=True)#依据col1进行合并
(df2) df2与df1进行乘法运算 div() df1.div(df2) 用df1除df2 rdiv() df1.rdiv(df2) 用df2除df1 truediv() df1.truediv(df2...() df1.pow(df2) 计算df1的df2次方,df1^df2 rpow() df1.rpow(df2) 计算df2的df1次方,df2^df1 在Pandas中,这些函数的用法和运算规则都相同...两个DataFrame相加,如果DataFrame的形状和对应的索引都一样,直接将对应位置(按行索引和列索引确定位置)的数据相加,得到一个新的DataFrame。 2....如果Series的索引与DataFrame的行索引对应,要使Series按列与DataFrame运算,可以将axis参数设置成0或'index',这样会将Series依次与DataFrame中的每一列数据进行运算...其中Series可以按行运算,也可以按列运算,取决于axis参数。 ? fillna()函数的用法也一样,对运算结果进行空值填充。
pd.concat([df1,df2]) 明确给出axis=0,则是按列合并,此时行索引取并集。...pd.concat([df1,df2],join='inner',ignore_index=True) 当join='inner'时,按列合并,则行索引取交集。...pd.concat([df1,df2],axis=1,join='inner') 三、append方法的使用 append可以把两个 DataFrame 对象按行合并,其功能等价于上面讲的pd.concat...([df1,df2])。...df1.append(df2) 如果要使用append方法为df1对象增加记录行,需要把要增加的记录行构成df2,并且写成如下形式:df1=df1.append(df2)。
df2 <- read.csv("gene.csv") df2 3.数据框属性 dim(df1) #行和列 ## [1] 4 3 nrow(df1) #行 ## [1] 4 ncol(df1) #列..." 4.数据框取子集 $ #取列 df1$score #删掉score,按tab键试试 mean(df1$score) 4.1按坐标 df1[2,2] ## [1] "up" df1[2,] #取第...c(1,3),1:2] #取第一行和第三行,第一列到第二列 ## gene change ## 1 gene1 up ## 3 gene3 down 4.2按名字 df1[,"gene...jimmy nicker ## 100 59 names(scores)[scores>60] ## [1] "jimmy" "Damon" "Sophie" 8.后置的难点 8.1按条件...3 8.2筛选score > 0的基因 df1[k,1] #将score这列的score>0的行取出来 ## [1] "gene1" "gene2" df1$gene[k]#gene这列的score>0