首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

用过Excel,就会获取pandas数据框架中的值、行和列

在Python中,数据存储在计算机内存中(即,用户不能直接看到),幸运的是pandas库提供了获取值、行和列的简单方法。 先准备一个数据框架,这样我们就有一些要处理的东西了。...df.columns 提供列(标题)名称的列表。 df.shape 显示数据框架的维度,在本例中为4行5列。 图3 使用pandas获取列 有几种方法可以在pandas中获取列。...图4 方括号表示法 它需要一个数据框架名称和一个列名,如下图所示:df[列名]。方括号内的列名是字符串,因此我们必须在其两侧使用引号。尽管它需要比点符号更多的输入,但这种方法在任何情况下都能工作。...图9 要获得第2行和第4行,以及其中的用户姓名、性别和年龄列,可以将行和列作为两个列表传递,如下图所示。 图10 记住,df[['用户姓名','年龄','性别']]返回一个只有三列的新数据框架。...接着,.loc[[1,3]]返回该数据框架的第1行和第4行。 .loc[]方法 正如前面所述,.loc的语法是df.loc[行,列],需要提醒行(索引)和列的可能值是什么?

19.2K60
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    数据导入与预处理-第6章-01数据集成

    为提高数据分析的效率,多个数据源的数据需要合并到一个数据源,形成一致的数据存储,这一过程就是数据集成。...常用的合并数据的函数包括: 2.1 主键合并数据merge 主键合并数据类似于关系型数据库的连接操作,主要通过指定一个或多个键将两组数据进行连接,通常以两组数据中重复的列索引为合并键。...观察上图可知,result是一个4行5列的表格数据,且保留了key列并集部分的数据,由于A、B两列只有3行数据,C、D两列有4行数据,合并后A、B两列没有数据的位置填充为NaN。...axis轴的说明: 行合并: 观察上图可知,result对象由left与right上下拼接而成,其行索引与列索引为left与right的索引,由于left没有C、D 两个列索引,right...join 最简单,主要用于基于索引的横向合并拼接 merge 最常用,主要用于基于指定列的横向合并拼接 concat最强大,可用于横向和纵向合并拼接 append,主要用于纵向追加 3 思考题

    2.6K20

    超全的pandas数据分析常用函数总结:下篇

    文章中的所有代码都会有讲解和注释,绝大部分也都会配有运行结果,酱紫的话,整篇总结篇幅量自然不小,所以我分成了上下两篇,这里是下篇。 《超全的pandas数据分析常用函数总结:上篇》 5....5.1 数据的合并 用merge合并 DataFrame.merge(self,right,how =‘inner’,on = None) right指要合并的对象 on指要加入的列或索引级别名称,必须在两个...用append合并 data.append(data2) # 在原数据集的下方合并入新的数据集 输出结果: ?...用join合并 用下面这种方式会报错:列重叠,且没有指定后缀,因为上面的数据data和data2都有“id”列,所以需要给id列指明后缀。...axis:串联的轴,默认为0,即以索引串联(竖直拼接);如果为1,则以列串联(水平拼接) ignore_index:清除现有索引并将其重置,默认为False。

    5K20

    超全的pandas数据分析常用函数总结:下篇

    文章中的所有代码都会有讲解和注释,绝大部分也都会配有运行结果,酱紫的话,整篇总结篇幅量自然不小,所以我分成了上下两篇,这里是下篇。 《超全的pandas数据分析常用函数总结:上篇》 5....5.1 数据的合并 用merge合并 DataFrame.merge(self,right,how =‘inner’,on = None) right指要合并的对象 on指要加入的列或索引级别名称,必须在两个...用append合并 data.append(data2) # 在原数据集的下方合并入新的数据集 输出结果: ?...用join合并 用下面这种方式会报错:列重叠,且没有指定后缀,因为上面的数据data和data2都有“id”列,所以需要给id列指明后缀。...axis:串联的轴,默认为0,即以索引串联(竖直拼接);如果为1,则以列串联(水平拼接) ignore_index:清除现有索引并将其重置,默认为False。

    3.9K20

    Pandas数据合并:concat与merge

    一、引言在数据分析领域,Pandas是一个强大的Python库,它提供了灵活高效的数据结构和数据分析工具。其中,数据的合并操作是数据预处理中不可或缺的一部分。...本文将深入探讨Pandas中的两种主要合并方法——concat和merge,从基础概念到常见问题,再到报错解决,帮助读者全面掌握这两种方法。...为了避免这种情况,我们可以只选择需要的列进行拼接。...left_on和right_on:当左右两侧用于合并的列名不同时,分别指定左右两侧的列名。suffixes:当存在重名列时,给左右两侧的列添加后缀以区分。...总之,concat和merge是Pandas中非常重要的数据合并工具,熟练掌握它们的用法以及应对常见问题的方法,能够大大提高数据分析工作的效率。

    14210

    小蛇学python(15)pandas之数据合并

    在python的pandas中,合并数据共有三种思路。 其一,关系型数据库模式的连接操作。 其二,沿轴将多个操作对象拼接在一起。 其三,对互有重复数据的处理与合并。 我们分别来进行介绍。...image.png 我们看到,表格1里有3个b,表格2里有2个b,所以最终合并的表格里就有6个b,这就是所谓的笛卡尔乘积。在这里我也用了参数on,它的作用就是指定两个表格按照哪一列合并。...其实,如果两个对象的列名不同,但是列里的内容相同,也是可以合并的。看下面这个例子。...所谓轴,即是要么横着拼接,要么竖着拼接的意思。 比如想把2017年和2018年吉林大学在安徽省的专业招收人数情况横向拼接起来,就会用到concat。如下例子。...合并重叠数据 还有一种情况,就是用参数对象中的数据为调用者对象的缺失数据打补丁。这里,我们就需要用到combine_first函数。

    1.6K20

    (数据科学学习手札06)Python在数据框操作上的总结(初级篇)

    (0)还是按列向右拼接(1),默认0 ingore_index:axis所在方向上标签在合并后是否重置,默认False keys:是否对拼接的几个素材数据框进行二级标号(即在每部分子数据框拼接开始处创建外层标签...,储存对两个数据框中重复非联结键列进行重命名的后缀,默认为('_x','_y') indicator:是否生成一列新值_merge,来为合并后的每行标记其中的数据来源,有left_only,right_only...join()的合并对象 on:指定的合并依据的联结键列 how:选择合并的方式,'left'表示左侧数据框行数不可改变,只能由右边适应左边;'right'与之相反;'inner'表示取两个数据框联结键列的交集作为合并后新数据框的行...;'outer'表示以两个数据框联结键列的并作为新数据框的行数依据,缺失则填充缺省值  lsuffix:对左侧数据框重复列重命名的后缀名 rsuffix:对右侧数据框重复列重命名的后缀名 sort:表示是否以联结键所在列为排序依据对合并后的数据框进行排序...细心的你会发现虽然我们成功得到了一个数据框按行的随即全排列,但是每一行的行index却依然和打乱前对应的行保持一致,如果我们利用行标号进行遍历循环,那么实际得到的每行和打乱之前没什么区别,因此下面引入一个新的方法

    14.3K51

    数据合并与数据关联:数据处理中的核心操作

    数据合并(Data Merging)数据合并是指将多个数据集整合为一个数据集的过程。通常,数据合并基于某些共同的列或键(Key)进行,这些列或键在两个或多个数据集中都存在。...数据合并的主要目的是将分散的数据整合到一个统一的结构中,以便后续的分析和处理。数据合并的常见方法数据合并可以分为两种主要方式:纵向合并和横向合并。...纵向合并(Concatenation)纵向合并是指将多个数据集按行或列拼接在一起。这种合并方式通常用于数据结构相同但数据内容不同的情况。例如,将多个月份的数据表按行拼接成一个年度数据表。...True)print(result)横向合并(Joining/Merging)横向合并是指基于某些共同的列或键将两个数据集合并在一起。...数据合并与数据关联的区别尽管数据合并和数据关联都是数据处理中的重要操作,但它们的目的和应用场景有所不同:目的:数据合并的主要目的是整合多个数据集,形成一个统一的数据结构。

    10721

    为什么Pandas是最流行的Python数据分析库?

    数据类型 Pandas的基本数据类型是dataframe和series两种,也就是行和列的形式,dataframe是多行多列,series是单列多行。...如果在jupyter notebook里面使用pandas,那么数据展示的形式像excel表一样,有行字段和列字段,还有值。 2....选择数据子集 导入数据后,一般要对数据进行清洗,我们会选择部分数据使用,也就是子集。 在pandas中选择数据子集非常简单,通过筛选行和列字段的值实现。 具体实现如下: 4....创建新列 有时需要通过函数转化旧列创建一个新的字段列,pandas也能轻而易举的实现 image 6....主要的内容有:数据的创建、查看、筛选、拼接、连接、分组、变形、可视化等等。 而且这个小册子包含了很多代码示例,如果你能完整过一遍,入门Pandas基本没啥问题。

    14110

    pandas 文本处理大全(附代码)

    继续更新pandas数据清洗,历史文章: pandas 缺失数据处理大全(附代码) pandas 重复数据处理大全(附代码) 感兴趣可以关注这个话题pandas数据清洗,第一时间看到更新。...---- 文本的主要两个类型是string和object。如果不特殊指定类型为string,文本类型一般为object。...其中,expand参数可以让拆分的内容展开,形成单独的列,n参数可以指定拆分的位置来控制形成几列。 下面将email变量按照@进行拆分。...将单个序列拼接为一个完整字符串 如上所述,当没有设置ohters参数时,该方法会将当前序列合并为一个新的字符串。...拼接序列和其他类列表型对象为新的序列 下面先将name列和*列拼接,再将level列拼接,形成一个新的序列。

    1.1K20

    python数据分析——数据的选择和运算

    具体程序代码如下所 示: 二、多表合并 有的时候,我们需要将一些数据片段进行组合拼接,形成更加丰富的数据集。...类似于sql中的on用法。可以不指定,默认以2表中共同字段进行关联。 left_on和right_on:两个表里没有完全一致的列名,但是有信息一致的列,需要指定以哪个表中的字段作为主键。...How 提到了连接的类型 left_suffix 要从左框架的重叠列中使用的后缀 right_suffix 要从右框架的重叠列中使用的后缀 sort 对输出进行排序 【例】对于存储在本地的销售数据集...具体程序代码如下所示: 3使用concat()方法合并数据集 concat()是最数据处理中最为强大的函数之一,可用于横向和纵向合并拼接数据。...关键技术:如果需要沿axis=1合并两个对象,则会追加新列到原对象右侧。

    19310

    聊聊Pandas的前世今生

    数据类型 Pandas的基本数据类型是dataframe和series两种,也就是行和列的形式,dataframe是多行多列,series是单列多行。...如果在jupyter notebook里面使用pandas,那么数据展示的形式像excel表一样,有行字段和列字段,还有值。 2....选择数据子集 导入数据后,一般要对数据进行清洗,我们会选择部分数据使用,也就是子集。 在pandas中选择数据子集非常简单,通过筛选行和列字段的值实现。 具体实现如下: 4....创建新列 有时需要通过函数转化旧列创建一个新的字段列,pandas也能轻而易举的实现 image 6....主要的内容有:数据的创建、查看、筛选、拼接、连接、分组、变形、可视化等等。 而且这个小册子包含了很多代码示例,如果你能完整过一遍,入门Pandas基本没啥问题。

    96340

    数据导入与预处理-课程总结-04~06章

    2.1.2 删除缺失值 pandas中提供了删除缺失值的方法dropna(),dropna()方法用于删除缺失值所在的一行或一列数据,并返回一个删除缺失值后的新对象。...常用的合并数据的函数包括: 3.2.3 主键合并数据merge 主键合并数据类似于关系型数据库的连接操作,主要通过指定一个或多个键将两组数据进行连接,通常以两组数据中重复的列索引为合并键。...它们的区别是: df.join() 相同行索引的数据被合并在一起,因此拼接后的行数不会增加(可能会减少)、列数增加; df.merge()通过指定的列索引进行合并,行列都有可能增加;merge也可以指定行索引进行合并...join 最简单,主要用于基于索引的横向合并拼接 merge 最常用,主要用于基于指定列的横向合并拼接 concat最强大,可用于横向和纵向合并拼接 append,主要用于纵向追加 3.3 数据变换...# 重塑df,使之具有两层行索引 # 原来的列数据one, two, three就到了行上来了,形成多层索引。

    13.1K10

    熟练掌握 Pandas 合并术,数据处理不再伤脑筋

    这是 pandas 快速上手系列的第 4 篇文章,本篇详细介绍了 concat 的使用和示例。...pandas中的 concat() 方法用于将两个或多个 DataFrame 对象沿着行 axis=0 或者列 axis=1 的方向拼接在一起,生成一个新的DataFrame对象。...,即需要合并的数据对象 axis: 指定合并的轴向,axis=0 是纵向合并(增加行数), axis=1 是横向合并(增加列数) join: 连接方式,有 inner (相交部分)和 outer (并集部分...) ignore_index: 设置为 True 时,合并后的数据索引将重新排序 keys: 用于构造合并后层次化的索引,可以给每个数据源命名 纵向合并两个DataFrame,设置 axis=0 import...join='outer'表示取两个 DataFrame 的行列索引的并集进行拼接,缺失值为NaN import pandas as pd df1 = pd.DataFrame({'A': [1, 2]

    44700

    盘点 Pandas 中用于合并数据的 5 个最常用的函数!

    df0.merge(df1, left_on="a", right_on="c") 除了 a 和 c 的单独列之外,它的结果与之前的合并几乎相同。这里,额外提两个特殊参数:笛卡尔积、使用后缀。...在两列 a 和两列 b 之间,taking_larger_square 取较大列中值的平方。...在这种情况下,df1 的 a 列和 b 列将作为平方,产生最终值,如上面的代码片段所示 5、append 回顾前文,我们讨论的大多数操作都是针对按列来合并数据。 如果按行合并(纵向)该如何操作呢?...他们分别是: concat[1]:按行和按列 合并数据; join[2]:使用索引按行合 并数据; merge[3]:按列合并数据,如数据库连接操作; combine[4]:按列合并数据,具有列间(相同列...)元素操作; append[5]:以DataFrame或dict对象的形式逐行追加数据。

    3.4K30

    python数据科学系列:pandas入门详细教程

    或字典(用于重命名行标签和列标签) reindex,接收一个新的序列与已有标签列匹配,当原标签列中不存在相应信息时,填充NAN或者可选的填充值 set_index/reset_index,互为逆操作,...4 合并与拼接 pandas中又一个重量级数据处理功能是对多个dataframe进行合并与拼接,对应SQL中两个非常重要的操作:union和join。...pandas完成这两个功能主要依赖以下函数: concat,与numpy中的concatenate类似,但功能更为强大,可通过一个axis参数设置是横向或者拼接,要求非拼接轴向标签唯一(例如沿着行进行拼接时...,要求每个df内部列名是唯一的,但两个df间可以重复,毕竟有相同列才有拼接的实际意义) merge,完全类似于SQL中的join语法,仅支持横向拼接,通过设置连接字段,实现对同一记录的不同列信息连接,支持...例如,以某列取值为重整后行标签,以另一列取值作为重整后的列标签,以其他列取值作为填充value,即实现了数据表的行列重整。

    15K20

    掌握Pandas库的高级用法数据处理与分析

    记得根据实际情况选择合适的方法,以保证数据质量和模型效果。3. 多列操作与函数应用Pandas提供了强大的方法来对多列进行操作,并能够轻松地应用自定义函数。...下面是一些相关技术:多列操作# 添加新列df['New_Column'] = df['A'] + df['B']​# 对多列进行统计计算df['Sum'] = df[['A', 'B']].sum(axis...数据合并与拼接在处理多个数据集时,经常需要将它们合并或拼接起来。...Pandas提供了便捷的方法来实现这一点:数据合并# 创建两个示例数据集df1 = pd.DataFrame({'key': ['K0', 'K1', 'K2', 'K3'],...总结总的来说,本文介绍了Pandas库的一系列高级用法,涵盖了数据清洗与预处理、多列操作与函数应用、数据合并与拼接、数据分组与聚合、数据透视表与交叉表、缺失值处理的高级技巧、文本数据处理、数据可视化、并行处理

    44920
    领券