Overview 本文将 Spark 作业称为 Spark Application 或者简称为 Spark App 或者 App。...目前我们组的计算平台的 Spark 作业,是通过 Spark Operator 提交给 Kubernetes 集群的,这与 Spark 原生的直接通过 spark-submit 提交 Spark App...Spark Operator 的提交作业的逻辑主要在 pkg/controller/sparkapplication/submission.go。...Summary 本文主要介绍了 Spark Operator 中提交 Spark 作业的代码逻辑,也介绍了在 Spark Operator 中检查提交作业逻辑的问题,由于 Operator 依赖于 Spark...镜像,默认情况下,Tenc 上的 Spark Operator 使用的是计算资源组定制过的 Spark 镜像,因此,如果用户对作业提交有其他定制化的需求,就需要重新 build Spark Operator
参见书籍 《图解Spark:核心技术与案例实战》 要点概述 ** 作业(Job)提交后由行动操作触发作业执行,根据RDD的依赖关系构建DAG图,由DAGSheduler(面向阶段的任务调度器)解析 *...任务的提交 SparkContext 调用DAGSheduler中的runJob方法,调用submitJob方法来继续提交作业,在DAGSheduler的onReceive方法接收提交的任务并完成模式匹配后...,调用handleJobSubmitted方法提交作业,并且在这个方法中进行阶段划分。...划分调度阶段 Spark调度阶段的划分在DAGScheduler中的handleJobSubmitted方法中根据最后一个RDD生成ResultStage阶段开始的。...,整个作业被划分为了4个阶段。
1.文档编写目的 ---- 继上一章介绍如何使用R连接Hive与Impala后,Fayson接下来讲讲如何在CDH集群中提交R的Spark作业,Spark自带了R语言的支持,在此就不做介绍,本文章主要讲述如何使用...Rstudio提供的sparklyr包,向CDH集群的Yarn提交R的Spark作业。...内容概述 1.命令行提交作业 2.CDSW中提交作业 3.总结 测试环境 1.操作系统:RedHat7.2 2.采用sudo权限的ec2-user用户操作 3.CDSW版本1.1.1 4.R版本3.4.2...前置条件 1.Spark部署为On Yarn模式 2.CDH集群正常 3.CDSW服务正常 2.命令行提交作业 ---- 1.在R的环境安装sparklyr依赖包 [ec2-user@ip-172-31...如何在Spark集群中分布式运行R的所有代码(Spark调用R的函数库及自定义方法),Fayson会在接下来的文章做详细介绍。 醉酒鞭名马,少年多浮夸! 岭南浣溪沙,呕吐酒肆下!
最近在研究Spark源码,顺便记录一下,供大家学习参考,如有错误,请批评指正。好,废话不多说,这一篇先来讲讲Spark作业提交流程的整体架构。...Yarn-client模式 关于Yarn-client与Yarn-cluster两种模式的区别与使用场景; 区别:这两种spark作业提交方式的区别在于Driver所处的位置不同。...使用场景:Yarn-client模式主要用于测试环境,因为使用该模式提交作业的时候,可以在客户端实时观察作业运行产生的日志及作业的运行状况;Yarn-cluster模式用于实际生产环境,因为其运行的作业所产生的日志是在远程的节点上...总结:以上简单介绍了三种Spark作业的提交方式;上述的三种模式中的每个组件的内部工作原理会在后续的文章一一解答,包括Master资源分配算法,DAGScheduler的stage划分算法,TaskScheduler...如需转载,请注明: Spark内核分析之spark作业的三种提交方式
作业的方式有多种,前面Fayson介绍了Livy相关的文章主要描述如何在集群外节点通过RESTful API接口向CDH集群提交Spark作业以及《如何使用Oozie API接口向非Kerberos环境的...CDH集群提交Spark作业》,本篇文章主要介绍使用Oozie的API接口向Kerberos集群提交Spark作业。...Livy相关文章: 《Livy,基于Apache Spark的开源REST服务,加入Cloudera Labs》 《如何编译Livy并在非Kerberos环境的CDH集群中安装》 《如何通过Livy的RESTful...API接口向非Kerberos环境的CDH集群提交作业》 《如何在Kerberos环境的CDH集群部署Livy》 《如何通过Livy的RESTful API接口向Kerberos环境的CDH集群提交作业...》 内容概述 1.环境准备 2.示例代码编写及测试 3.总结 测试环境 1.CM和CDH版本为5.13.1 前置条件 1.集群已启用Kerberos 2.环境准备及描述 ---- 1.我们将作业运行的jar
异常描述 在一个CDSW环境中,由于其中一个租户经常提交大型Spark作业将YARN上租户所在的资源池资源用到95%以上,从而影响到同一租户下其他用户提交作业的运行。...这种情况下我们没办法直接找到这些大型作业的实际提交人,是因为我们在为CDSW做多租户配置的时候会将登录CDSW的某一批用户统一绑定到同一个租户下(这样设计的目的主要是为了简化YARN的租户管理,而不用为每个用户创建资源池队列...本文主要描述通过修改Spark的配置来将作业的实际提交人的用户名展示到Spark UI,非CDSW的YARN的多租户管理也会碰到类似问题。...3.在SparkUI上找到该作业,并点击“Environment”,可以看到参数列表中打印了提交Spark作业的用户 ?...中提交的Spark作业里该参数不会生效,需要重启启动Session才能让参数生效。
作业的方式有多种,前面Fayson介绍了Livy相关的文章主要描述如何在集群外节点通过RESTful API接口向CDH集群提交Spark作业,本篇文章我们借助于oozie-client的API接口向非...Kerberos集群提交Spark作业。...Livy相关文章: 《Livy,基于Apache Spark的开源REST服务,加入Cloudera Labs》 《如何编译Livy并在非Kerberos环境的CDH集群中安装》 《如何通过Livy的RESTful...API接口向非Kerberos环境的CDH集群提交作业》 《如何在Kerberos环境的CDH集群部署Livy》 《如何通过Livy的RESTful API接口向Kerberos环境的CDH集群提交作业...》 内容概述 1.环境准备 2.示例代码编写及测试 3.总结 测试环境 1.CM和CDH版本为5.13.1 前置条件 1.集群未启用Kerberos 2.环境准备及描述 ---- 1.我们将作业运行的jar
1.问题描述 Spark的HistoryServer能正常查看之前的历史作业日志,但新提交的作业在执行完成后未能在HistoryServer页面查看。...] 3.将/user/spark/applicationHistory目录的所属组修改为supergroup,再次执行作业 | sudo –u hdfs hadoop dfs –chown spark...] 4.在History Server未查看到刚执行完成的007作业 [933y01auam.jpeg] 3.问题原因 由于/user/spark/applicationHistory目录的所属组为supergroup...,导致所有用户作业的目录均为supergroup组,之前能正常查看的历史作业由于目录的所属组任为spark。...4.解决方法 将/user/spark/applicationHistory目录及该目录下的子目录所属组修改为spark | sudo –u hdfs hadoop dfs –chgrp –R spark
集群外的节点向集群提交Spark作业,文章中均采用Spark1来做为示例,本篇文章主要介绍如何是用Oozie API向Kerberos环境的CDH集群提交Spark2作业。...: CM和CDH版本为5.13.1 前置条件: 集群已启用Kerberos 2.环境准备及描述 1.我们将作业运行的jar包上传到HDFS目录 [root@ip-172-31-16-68 ~]# kinit...API向集群提交作业相关文章: 《如何使用Oozie API接口向非Kerberos环境的CDH集群提交Spark作业》 《如何使用Oozie API接口向非Kerberos环境的CDH集群提交Java...作业》 《如何使用Oozie API接口向非Kerberos环境的CDH集群提交Spark作业》 《如何使用Oozie API接口向Kerberos集群提交Java程序》 Livy相关文章: 《如何编译...Livy并在非Kerberos环境的CDH集群中安装》 《如何通过Livy的RESTful API接口向非Kerberos环境的CDH集群提交作业》 《如何在Kerberos环境的CDH集群部署Livy
理论上的参数量 之前翻译了 Christopher Olah 的那篇著名的 Understanding LSTM Networks,这篇文章对于整体理解 LSTM 很有帮助,但是在理解 LSTM 的参数数量这种细节方面...本文就来补充一下,讲讲如何计算 LSTM 的参数数量。 建议阅读本文前先阅读 Understanding LSTM Networks 的原文或我的译文。 首先来回顾下 LSTM。...图中的A 就是 cell,xt 中的词依次进入这个 cell 中进行处理。...的总参数量就是直接 × 4: ((embedding_size + hidden_size) * hidden_size + hidden_size) * 4 注意这 4 个权重可不是共享的,都是独立的网络...final_memory_state.shape=TensorShape([32, 64]) final_carry_state.shape=TensorShape([32, 64]) OK,LSTM 的参数量应该挺清晰了
引言 使用tree命令来计算目录下的文件和子文件夹数量是一种非常简便的方法,这个命令以其能够以树状图的形式展示文件和文件夹而广为人知。...ISO 目录中的文件和子目录的信息。...-L — 用来指定要展示的目录树的层数,在上面的例子中设置为1。 -f — 让tree显示每个文件的完整路径。...你可以参考tree的手册页,了解更多实用的选项,包括一些配置文件和环境变量,以便更深入地理解tree的工作原理。...总结 本文[1]中,分享了一个关键技巧,它能够让您以一种新颖的方式使用tree工具,与传统的以树状图展示文件和目录不同。您可以通过查阅手册页中的多种tree选项来创造新的使用技巧。
如何统计表的数据数量 1. count(*) 在统计一个表行数的时候,我们一般会使用 select count(*) from t。那么count(*) 是如何实现的呢?...server层对于返回的每一行,放数字1进去,然后判断不为null的,累加1 MySQL 针对count(*)做了优化,执行效果较快。 count(字段) 返回的是字段不为null的总个数。...用缓存系统计数 对于更新频繁的数据库,可能会考虑使用缓存系统支持。但是缓存系统有可能丢失更新。另一种情况就是,缓存有可能在多个会话并发操作的时候,出现数据不一致的情况。 3....用数据库计数 将表数量的计数值存放在单独的表中。 3.1 解决了崩溃失效的问题 InnoDB支持崩溃恢复不丢失数据。 3.2 解决了数据不一致问题 ?...在T3时刻,会话A尚未提交,会话B查到的表C的计数器没有加1,而且与查询最近100条记录是对应的。
现在腾讯云的tke托管集群已经需要收费了,针对不同的集群规格,会有一些资源最大的限制,如果超过这个限制,会影响集群可用性,从而导致集群访问异常,具体的限制说明可以参考文档https://cloud.tencent.com.../document/product/457/68804 那么集群的 最大管理节点数量、最大 Pod 数量、最大 ConfigMap 数量、最大 CRD 数量 这4个指标该如何统计当前的数量呢,下面我们来给下对应的统计命令...节点数量统计 kubectl get node -A | wc -l pod数量统计 kubectl get pod -A | wc -l configmap数量统计 kubectl get cm -...grep etcd_object_counts|sort -rn -k2 | grep -i ${i} ; done | awk '{sum+=$NF}END{print sum}' 注意:资源对象数量在不同版本的...TKE为1.22版本时,指标名字apiserver_storage_objects和etcd_object_counts都可以查询到 如果是1.22以上的TKE版本,用下面命令统计 for i in `
Fayson的github: https://github.com/fayson/cdhproject 提示:代码块部分可以左右滑动查看噢 1.文档编写目的 ---- 在CDH集群中提交Spark作业,...大家也都知道Spark的Driver和Executor之间通讯端口是随机的,Spark会随选择1024和65535(含)之间的端口,因此在集群之间不建议启用防火墙。...在前面Fayson介绍了《如何指定Spark2作业中Driver和Executor使用指定范围内端口》,本篇文章Fayson主要介绍如何指定Spark1作业中Driver和Executor使用指定范围内的端口进行通讯...3.验证端口分配 ---- 1.向集群提交一个Spark的作业 spark-submit --class org.apache.spark.examples.SparkPi\ --master yarn-client...2.查看Spark作业的运行界面查看Driver和Executor使用的端口号 ?
1.文档编写目的 为什么CDH甚至最新的CDP中对于Spark SQL CLI或者JDBC/ODBC没有提供基于Spark Thrift Server的支持,参考Fayson之前的文章《0827-7.1.4...-如何在CDP中使用Spark SQL CLI》,在CDP中,Cloudera给出了新的解决方案Livy Thrift Server,它是对Spark Thrift Server的增强,支持JDBC/Thrift...本文主要介绍如何在CDP中通过Livy Thrift Server来提交Spark SQL作业。...2.2 修改Spark配置 1.在Spark组件的配置页面,搜索spark-conf/spark-defaults.conf 的 Spark 客户端高级配置代码段(安全阀),添加下面的参数然后保存修改。...2.在Spark组件的配置页面,搜索spark-conf/spark-env.sh 的 Spark 客户端高级配置代码段(安全阀),添加下面的参数然后保存修改。
1.文档编写目的 ---- 在CDH集群中提交Spark作业,大家也都知道Spark的Driver和Executor之间通讯端口是随机的,Spark会随选择1024和65535(含)之间的端口,因此在集群之间不建议启用防火墙...本篇文章Fayson主要介绍如何指定Spark2作业中Driver和Executor使用指定范围内的端口进行通讯。...3.验证端口分配 ---- 1.向集群提交一个Spark2的作业 spark2-submit --class org.apache.spark.examples.SparkPi\ --master...2.查看Spark作业的运行界面查看Driver和Executor使用的端口号 ?...4.Spark2中指定Executor的端口号是通过spark.blockManager.port指定与Spark1的(spark.executor.port)指定参数不同。
所以理解Spark是如何对数据进行分区的以及何时需要手动调整Spark的分区,可以帮助我们提升Spark程序的运行效率。 什么是分区 关于什么是分区,其实没有什么神秘的。...我们可以尝试通过coalesce来增加分区的数量,观察一下具体结果: scala> val numsDF3 = numsDF.coalesce(6) numsDF3: org.apache.spark.sql.Dataset...scala> genderDF.rdd.partitions.size res23: Int = 200 一些注意点 该如何设置分区数量 假设我们要对一个大数据集进行操作,该数据集的分区数也比较大,...但是Spark却不会对其分区进行调整,由此会造成大量的分区没有数据,并且向HDFS读取和写入大量的空文件,效率会很低,这种情况就需要我们重新调整分数数量,以此来提升效率。...对于大数据,200很小,无法有效使用群集中的所有资源 一般情况下,我们可以通过将集群中的CPU数量乘以2、3或4来确定分区的数量。
我们在使用条码打印软件打印标签的时候,一般都是每个标签打印一份或者多份,这种统一打印相同份数的情况很好设置。...但是有些时候需要每种标签打印不同的份数,这种情况该如何处理,前提是需要借助一个数据库文件,下面小编会详细介绍操作过程。 首先打开条码打印软件,新建一个标签,尺寸按照标签纸的尺寸进行设置。...点击设置数据源,将保存有标签内容的Excel表格导入到软件中,在预览处我们可以看到其中有一项是打印数量,这一列信息就是实现打印不同数量的关键。...01.png 使用单行文字工具输入文字,并插入相应的数据源字段。 02.png 点击打印预览,勾选从记录的字段中读取打印数量,在下拉菜单中选择“打印数量”一项。...最终就会按照Excel表格里设置的打印数量进行打印。从预览界面可以看到标签的打印数量和Excel表中的信息完全符合。
在AI的世界里,"token"就像是把我们说的话或写的文字拆分成的小块块,每块可以是一个词、一个短语、一个标点,甚至一个字母。不同的AI系统可能有不同的拆分方法。...阿里云的灵积平台有个工具,叫做Token计算器。这个工具就是用来帮我们估算一段文字里有多少个这样的小块块。这个工具是免费的,用来帮助我们大概知道要花多少钱,但它只是个估计,可能不是完全准确的。...比如,在灵积平台的一些AI模型里,像通义千问、Llama2这样的,它们算钱是根据我们输入和输出的小块块数量来的。有时候,一个字符可能就代表一个小块块,有时候可能几个字符才代表一个。...我们可以让AI写一个程序来调用这个token计算API来自动计算文档的token数量。...字符,将分拆的各个txt文档的Token数目加总在一起,设为变量{totalusagetokens},输出信息:{txtfilename}这篇文档的Token数量估计为{totalusagetokens
在一个Kafka集群中如何选择topics/partitions的数量 翻译自How to choose the number of topics/partitions in a Kafka cluster...: kafka的基本运行原理 kafka的性能如何 kafka为何效能好 kafka有哪些瓶颈 目前在Kafka 2.0版本中已经支持单集群200K的Partition数量,这真是可喜可贺啊~~~...你可以估算出生产者在每个Parition上的吞吐量(我们叫它为 p),再估算出消费者在每个 Partition上的吞吐量(叫它为 c)。...因此我们需要实际的评估。 随着时间推移Partition数量可能是逐步增加的,我们需要留意生产Msg时附加Key的情况。...因此,更多的partition,就意味着需要配置更多的允许打开的文件句柄数。我们在生产环境中见到过每台broker上有多于30万的打开文件句柄。
领取专属 10元无门槛券
手把手带您无忧上云