刚开始, 先上小规模数据, 模型往大了放, 只要不爆显存, 能用256个filter你就别用128个. 直接奔着过拟合去. 没错, 就是训练过拟合网络, 连测试集验证集这些都可以不用.
为什么?...当然, 我是个心急的人, 总爱设个大点的.
6 对比训练集和验证集的loss
判断过拟合, 训练是否足够, 是否需要early stop的依据, 这都是中规中矩的原则, 不多说了.
7 清楚receptive...网络原理的理解最重要, CNN的conv这块, 你得明白sobel算子的边界检测....CNN更加适合训练回答是否的问题, 如果任务比较复杂, 考虑先用分类任务训练一个模型再finetune.
无脑用ReLU(CV领域).
无脑用3x3.
无脑用xavier....LRN一类的, 其实可以不用. 不行可以再拿来试试看.
filter数量2^n.
多尺度的图片输入(或者网络内部利用多尺度下的结果)有很好的提升效果.
第一层的filter, 数量不要太少.