Redis基于内存,读写速度快,也可做持久化,但是内存空间有限,当数据量超过内存空间时,需扩充内存,但内存价格贵。
1、CPU,如果存在大量的计算,他们会长时间不间断的占用CPU资源,导致其他资源无法争夺到CPU而响应缓慢,从而带来系统性能问题,例如频繁的FullGC,以及多线程造成的上下文频繁的切换,都会导致CPU繁忙,一般情况下CPU使用率<75%比较合适。 2、内存,Java内存一般是通过jvm内存进行分配的,主要是用jvm中堆内存来存储Java创建的对象。内存的读写速度非常快,但是内存空间又是有限的,当内存空间被占满,对象无法回收时,就会导致内存溢出或内存泄漏。 3、磁盘I/O,磁盘的存储空间要比内存存储空间大很多,但是磁盘的读写速度比内存慢,虽然现在引入SSD固态硬盘,但是还是无法跟内存速度相比。 4、网络,带宽的大小,会对传输数据有很大影响,当并发量增加时,网络很容易就会成为瓶颈。 5、异常,Java程序,抛出异常,要对异常进行捕获,这个过程要消耗性能,如果在高并发的情况下,持续进行异常处理,系统的性能会受影响。 6、数据库,数据库的操作一般涉及磁盘I/O的读写,大量的数据库读写操作,会导致磁盘I/O性能瓶颈,进而导致数据库操作延迟。 7、当在并发编程的时候,经常会用多线程操作同一个资源,这个时候为了保证数据的原子性,就要使用到锁,锁的使用会带来上下文切换,从而带来性能开销,在JDK1.6之后新增了偏向锁、自旋锁、轻量级锁、锁粗化、锁消除。
在专栏之前的几篇文章中,我们总结了缓冲池,缓存页,redo log,undo log,以及数据页和数据行在底层是如何进行存储的,后续介绍了表空间,段,区等概念。这一节比较特殊,讲述的是和Linux有关的交互原理,因为多数的mysql都是部署在linux的服务器上面,本节会简单介绍一下linux是如何处理mysql的请求的,以及linux系统会带来哪些问题
当内存数据页跟磁盘数据页内容不一致的时候,我们称这个内存页为“脏页”。内存数据写入到磁盘后,内存和磁盘上的数据页的内容就一致了,称为“干净页”。
从MySQL发布正式版本8.0.11以来,MySQL 又相继发布8.0.12-8.0.15 四个版本.本文着重介绍8.0.13和8.0.14 版本中值得关注的改进点。
MySQL InnoDB缓冲池是数据库内存中的一块区域,用于缓存最近使用的数据和索引。合理地管理InnoDB缓冲池可以显著提高读写性能和响应速度,因为将数据保存在内存中比从磁盘读取要快得多。
innodb_io_capacity:脏页的刷新的数量,可以动态调整,默认是200,该参数的设置取决于硬盘的IOPS的大小,IOPS就是每秒的读写次数。
1、我们在监控图表中关注的性能指标大概有这么几个:CPU、内存、连接数、io读写时间、io操作时间、慢查询、系统平均负载以及memoryOver
备份恢复是 DBA 必备的技能,开源数据库 MySQL 在社区中有不少常用的备份恢复方案,xtrabackup,mypump,mydumper,mysqldump,mysql enterprise backup 等等。但是这些方法多数都是从外部利用各类数据库的机制来完成备份与回复,因此多多少少会存在操作步骤多,备份恢复比较慢等问题。于是 Oracle 在 19 年 7 月下旬发布的 MySQL 的 8.0.17 版本中,加入了一个全新的功能性插件:Clone。这个插件只需要几行 client 命令就可以完成数据库的备份恢复,且花费的时间远也低于常规的备份恢复手段。
原文:http://www.monitis.com/blog/101-tips-to-mysql-tuning-and-optimization/ MySQL是一个强大的开源数据库。随着MySQL上的应用越来越多,MySQL逐渐遇到了瓶颈。这里提供 101 条优化 MySQL 的建议。有些技巧适合特定的安装环境,但是思路是相通的。我已经将它们分成了几类以帮助你理解。 Mysql 监控 MySQL服务器硬件和OS(操作系统)调优: 1、有足够的物理内存,能将整个InnoDB文件加载到内存里 —— 如果访问
MySQL是一个强大的开源数据库。随着MySQL上的应用越来越多,MySQL逐渐遇到了瓶颈。这里提供 101 条优化 MySQL 的建议。有些技巧适合特定的安装环境,但是思路是相通的。我已经将它们分成了几类以帮助你理解。 MySQL监控MySQL服务器硬件和OS(操作系统)调优: 1、有足够的物理内存,能将整个InnoDB文件加载到内存里 —— 如果访问的文件在内存里,而不是在磁盘上,InnoDB会快很多。 2、全力避免 Swap 操作 — 交换(swapping)是从磁盘读取数据,所以会很慢。 3、使用电
经常面试都会问到MYSQL有哪些存储引擎,以及各自的优缺点。今天主要分享常见的存储引擎:MyISAM、InnoDB、MERGE、MEMORY(HEAP)、BDB(BerkeleyDB)等,以及最常用的MyISAM与InnoDB两个引擎 ,文章尾部有两者的详细比较。
答: 当我们在 4 核 8G 的机器上运 MySQL 5.7 时,大概可以支撑 500 的 TPS 和 10000 的 QPS。但是当服务的用户量远超这个量的时候,并且读的量大于写数据的量的时候,那我们解决的办法之一就是将数据库进行主从读写分离。
一个成熟的数据库架构并不是一开始设计就具备高可用、高伸缩等特性的,它是随着用户量的增加,基础架构才逐渐完善。这篇文章主要谈谈MySQL数据库在发展周期中所面临的问题及优化方案,暂且抛开前端应用不说,大致分为以下五个阶段:
看到标题,有的童鞋心中暗想“数据删除有什么可提的呢?不就是执行个delete语句吗?有什么难的呀?”其实呢数据删除没有你想的这么简单,一般情况下公司会明确的要求数据只能逻辑删除,不能物理删除。那什么优势逻辑删除,什么又是物理删除呢?
我们在此前的文章中讲解过,TSINGSEE青犀视频各个平台的默认数据库是SQLite,用户可以根据自己的需求更换为MySQL,以此来解决海量数据的使用与存储问题,并提高数据库的灵活性。关于数据库的切换操作步骤与注意事项,大家可以参考这篇文章:EasyGBS平台切换为MySQL数据库的操作步骤及注意事项。
mysql 为了保证crash-safe, 是通过引入binlog(server 层的逻辑日志), redo log(innodb 存储引擎层日志), undo log(innodb 存储引擎层日志)来保证的。
上图展示的是 MySQL 的主从切换流程。在 State-1 中,客户端的读写都直接访问节点 A,而节点 B 是 A 的备库,只是将 A 的更新都同步过来,到本地执行。这样可以保持节点 B 和 A 的数据是相同的。当需要切换的时候,就切成状态 2。这时候客户端读写访问的都是节点 B,而节点 A 是 B 的从库。
为了满足每秒插入100万条数据的需求,小编建议采用以下技术方案,以提升数据库系统的吞吐量和性能。
为了给高并发情况下的MySQL进行更好的优化,有必要了解一下mysql查询更新时的锁表机制。 一、概述 MySQL有三种锁的级别:页级、表级、行级。 MyISAM和MEMORY存储引擎采用的是表级锁(table-level locking);BDB存储引擎采用的是页面锁(page-level locking),但也支持表级锁;InnoDB存储引擎既支持行级锁(row-level locking),也支持表级锁,但默认情况下是采用行级锁。 MySQL这3种锁的特性可大致归纳如下: 表级锁:开销小,加锁快;不会出现死锁;锁定粒度大,发生锁冲突的概率最高,并发度最低。 行级锁:开销大,加锁慢;会出现死锁;锁定粒度最小,发生锁冲突的概率最低,并发度也最高。 页面锁:开销和加锁时间界于表锁和行锁之间;会出现死锁;锁定粒度界于表锁和行锁之间,并发度一般。 二、MyISAM表锁 MyISAM存储引擎只支持表锁,是现在用得最多的存储引擎。 1、查询表级锁争用情况 可以通过检查table_locks_waited和table_locks_immediate状态变量来分析系统上的表锁定争夺: mysql> show status like ‘table%’; +———————–+———-+ | Variable_name | Value | +———————–+———-+ | Table_locks_immediate | 76939364 | | Table_locks_waited | 305089 | +———————–+———-+ 2 rows in set (0.00 sec)Table_locks_waited的值比较高,说明存在着较严重的表级锁争用情况。
一个成熟的数据库架构并不是一开始设计就具备高可用、高伸缩等特性的,它是随着用户量的增加,基础架构才逐渐完善。
redis是Nosql数据库中使用较为广泛的非关系型内存数据库,redis内部是一个key-value存储系统。它支持存储的value类型相对更多,包括string(字符串)、list(链表)、set(集合)、zset(sorted set –有序集合)和hash(哈希类型,类似于Java中的map)。Redis基于内存运行并支持持久化的NoSQL数据库,是当前最热门的NoSql数据库之一,也被人们称为数据结构服务器。
1. 优化SQL 1)通过show status了解各种sql的执行频率 show status like 'Com_%' 了解 Com_select,Com_insert 的执行次数 2) 通过Explain分析低效的sql语句 3) 建立合适的索引 4) 通过show status like 'Handler_%'查看索引的使用情况 handler_read_key:根据索引读取行的请求数。如果该值
InnoDB用一块内存区域做I/O缓存池,该缓存池不仅用来缓存InnoDB的索引块,而且也用来缓存InnoDB的数据块。
数据库优化,主要包括数据表设计、索引、sql语句、表拆分、数据库服务器架构等方向的优化。
根据上图可以看到QPS:10.73k,实际上真实的并发大量数据到达的时候,我这里最高的QPS是将近15k.而目前单个数据库分片(实例)4CPU8G内存的配置下,最高的性能是7k的QPS。
非关系型数据库严格上不是一加粗样式种数据库,应该是一种数据结构化存储方法的集合,可以是文档或者键值对等
一、 PostgreSQL 的稳定性极强, Innodb 等引擎在崩溃、断电之类的灾难场景下抗打击能力有了长足进步,然而很多 MySQL 用户都遇到过Server级的数据库丢失的场景——mysql系统库是MyISAM的,相比之下,PG数据库这方面要好一些。 二、任何系统都有它的性能极限,在高并发读写,负载逼近极限下,PG的性能指标仍可以维持双曲线甚至对数曲线,到顶峰之后不再下降,而 MySQL 明显出现一个波峰后下滑(5.5版本之后,在企业级版本中有个插件可以改善很多,不过需要付费)。 三、PG 多年来在
题记: 文章内容输出来源:拉勾教育Java高薪训练营。 本篇文章是 MySQL 学习课程中的一部分笔记。
在当今数据驱动的时代,MySQL作为流行的开源关系型数据库管理系统,经常需要处理海量的数据。本文将实战讲解MySQL在大数据量下的解决方案,包括索引优化、查询优化、分表分库、读写分离和存储引擎选择等方面,并通过具体的SQL代码示例来展示这些策略的实际应用。写本文的目的主要是,目前业务系统中的数据量越来越多,需要进行优化处理。
本文以视频+文字放送,为你带来腾讯云企业级MySQL-列压缩特性 【需求背景】 当前MySQL有针对行格式级别以及数据库页面级别的压缩,这两种压缩方式在处理一个表,同时有大字段和其它很多小字段,并且针对小字段的读写访问频繁,对大字段的访问不频繁的场景中,它的读写访问都会压缩和解压数据,这造成许多不必要的计算资源浪费。 腾讯云企业级MySQL(CDB)运用列压缩功能来压缩访问不频繁的大字段,同时能够减少整行字段的存储空间,进而提高整体读写访问的效率。 例如一张员工表,前面三个字段分别表示员工 id、年龄以及
一个成熟的数据库架构并不是一开始设计就具备高可用、高伸缩等特性的,它是随着用户量的增加,基础架构才逐渐完善。这篇博文主要谈MySQL数据库发展周期中所面临的问题及优化方案,暂且抛开前端应用不说,大致分为以下五个阶段:
一个成熟的数据库架构并不是一开始设计就具备高可用、高伸缩等特性的,它是随着用户量的增加,基础架构才逐渐完善。这篇博文主要谈MySQL数据库发展周期中所面临的问题及优化方案,暂且抛开前端应用不说,大致分为以下五个阶段: 1、数据库表设计 项目立项后,开发部根据产品部需求开发项目,开发工程师工作其中一部分就是对表结构设计。对于数据库来说,这点很重要,如果设计不当,会直接影响访问速度和用户体验。影响的因素很多,比如慢查询、低效的查询语句、没有适当建立索引、数据库堵塞(死锁)等。当然,有测试工程师的团队,会做压
随着mysql存储的数据量越来越大,mysql查询单表时的响应速度也会随之变慢,尤其是当单节点承载的数据量超出一定的范围后,比如单表超过2000万之后,查询响应速度会下降的很快,因此,一方面可以考虑mysql集群,另一方面可以考虑读写分离,这两种方案的出发点不同,集群更多是从单节点可容纳的并发连接数考虑,比如单节点的mysql服务器支持的最大连接数是有限的;而读写分离可以提升mysql服务总体的读写性能,避免读请求和写请求都打到同一个节点上,分摊压力
发布者:全栈程序员栈长,转载请注明出处:https://javaforall.cn/148807.html原文链接:https://javaforall.cn
升级硬件通常是我们的第一考虑,主要原因是数据库会占用大量资源。不过这种解决方案也就仅限于此了。实际上,您通常可以让CPU或磁盘速度加倍,也可以让内存增大 4 到 8 倍。
存储引擎是 MySQL 中具体与文件打交道的子系统,它是根据 MySQL AB 公司提供的文件访问层抽象接口定制的一种文件访问机制,这种机制就叫作存储引擎 。
虽然近十年来各种存储技术飞速发展,但关系数据库由于其ACID的特性和功能强大的SQL查询,目前还是各种业务系统中关键和核心的存储系统,很多场景下高性能的设计最核心的部分就是关系数据库的设计。
在实际的生产环境中,如果对MySQL数据库的读和写都在一台数据库服务中操作,无论在安全性、高可用性,还是高并发性等各个方面都是完全不能满足实际需求的,一般来说都是通过主从复制(Master-Slave)的方式来同步数据,再通过读写分离来提升数据库的并发负载能力这样的方案进行部署与实施
redis 是一个高性能的key-value数据库。redis的出现,很大程度补偿了memcached这类keyvalue存储的不足,在部分场合可以对关系数据库起到很好的补充作用。它跟memcached类似,不过数据可以持久化,而且支持的数据类型很丰富。有字符串,链表,集合和有序集合。支持在服务器端计算集合的并,交和补集(difference)等,还支持多种排序功能。所以Redis也可以被看成是一个数据结构服务器。
读写分离解决的是,数据库的写操作,影响了查询的效率,适用于读远大于写的场景。读写分离的实现基础是主从复制,主数据库利用主从复制将自身数据的改变同步到从数据库集群中,然后主数据库负责处理写操作(当然也可以执行读操作),从数据库负责处理读操作,不能执行写操作。并可以根据压力情况,部署多个从数据库提高读操作的速度,减少主数据库的压力,提高系统总体的性能。
软RAID:由操作系统模拟的RAID,一旦硬盘损坏,操作系统就会损坏,RAID会丧失作用(练习模拟使用)
当应用程序访问数据时, MySQL 将数据从磁盘读取到内存,或将内存数据写入磁盘是数据库系统常见的IO操作。相比内存操作,磁盘IO操作运行速度相对较慢,需消耗较多的时间。当出现大规模数据读取 比如全表扫描,频繁数据读写请求时,高并发的写入更新数据,IO操作可能成为系统瓶颈。
相信玩Wordpress的小伙伴都想优化自己网站的加载速度。降低Wordpress对系统资源的开销。所以特地写一篇关于本站静态化的方法。
这篇博文主要谈MySQL数据库发展周期中所面临的问题及优化方案,暂且抛开前端应用不说,大致分为以下五个阶段:
MySQL是一个功能强大的开源数据库。随着越来越多的数据库驱动的应用程序,人们一直在推动MySQL发展到它的极限。这里是101条调节和优化 MySQL安装的技巧。一些技巧是针对特定的安装环境的,但这些
使用MySQL的存储引擎可以实现对数据的灵活管理,存储引擎是MySQL数据库的核心组件之一,它负责数据的存储和检索。MySQL提供了多种存储引擎,每个存储引擎都有其独特的特性和适用场景。下面将详细介绍如何使用MySQL的存储引擎来灵活地管理数据。
同时处于执行状态的所有事务,是否可以并行? 不可以。因为多个执行中的事务是由可能出现锁冲突的,锁冲突之后会产生锁等待问题。
MySQL可以很好的支持大数据量的存取,但是一般说来,数据库中的表越小,在它上面执行的查询也就会越快。因此,在创建表的时候,为了获得更好的性能,我们可以将表中字段的宽度设得尽可能小。
领取专属 10元无门槛券
手把手带您无忧上云