首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    Uber开源Atari,让个人计算机也可以快速进行深度神经进化研究

    Uber近期发布了一篇文章,公开了五篇关于深度神经进化的论文,其中包括发现了遗传算法可以解决深层强化学习问题,而一些流行的方法也可替代遗传算法,如深度Q-learning和策略梯度。这项研究是Salimans等人在2017年进行的,另一种神经进化算法,即进化策略(ES)同样可以解决问题。Uber进一步阐述了以下问题:如何通过更多地探索更新智能体所带来的压力形式来改进ES;ES是如何与梯度下降联系起来的。这些研究花费巨大,通常需要720到3000个CPU,并分布在巨大,高性能的计算集群中,因此对于大多数研究人员、学生、公司和业余爱好者来说,深度神经进化研究似乎遥不可及。

    04

    GoogLeNetv2 论文研读笔记

    当前神经网络层之前的神经网络层的参数变化,引起神经网络每一层输入数据的分布产生了变化,这使得训练一个深度神经网络变得复杂。这样就要求使用更小的学习率,参数初始化也需要更为谨慎的设置。并且由于非线性饱和(注:如sigmoid激活函数的非线性饱和问题),训练一个深度神经网络会非常困难。我们称这个现象为:internal covariate shift。同时利用归一化层输入解决这个问题。我们将归一化层输入作为神经网络的结构,并且对每一个小批量训练数据执行这一操作。Batch Normalization(BN) 能使用更高的学习率,并且不需要过多地注重参数初始化问题。BN 的过程与正则化相似,在某些情况下可以去除Dropout

    03

    精彩碰撞!神经网络和传统滤波竟有这火花?

    惯性传感器在航空航天系统中主要用于姿态控制和导航。微机电系统的进步促进了微型惯性传感器的发展,该装置进入了许多新的应用领域,从无人驾驶飞机到人体运动跟踪。在捷联式 IMU 中,角速度、加速度、磁场矢量是在传感器固有的三维坐标系中测量的数据。估计传感器相对于坐标系的方向,速度或位置,需要对相应的传感数据进行捷联式积分和传感数据融合。在传感器融合的研究中,现已提出了许多非线性滤波器方法。但是,当涉及到大范围的不同的动态/静态旋转、平移运动时,由于需要根据情况调整加速度计和陀螺仪融合权重,可达到的精度受到限制。为克服这些局限性,该项研究利用人工神经网络对常规滤波算法的优化和探索。

    02

    RNN增强—ACT(自适应计算次数)多因子选股模型

    今天我们来读一篇来自国信证券研究文章 RNN简介 RNN 不同于传统神经网络的感知机的最大特征就是跟时间挂上钩,即包含了一个循环的网络,就是下一时间的结果不仅受下一时间的输入的影响,也受上一时间输出的影响,进一步地说就是信息具有持久的影响力。放在实际中也很容易理解,人们在看到新的信息的时候产生的看法或者判断,不仅仅是对当前信息的反应,先前的经验、思想的也是参与进去这次信息的推断的。人类的大脑 不是一张白纸,是包含许多先验信息的,即思想的存在性、持久性是显然的。举个例子,你要对某电影中各个时点发生的事件类

    07
    领券