首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

当n_job=-1时,sklearn Logistic回归实际上不会并行化

Logistic回归是一种用于分类问题的机器学习算法,它通过拟合一个逻辑函数来预测样本的类别。在sklearn库中,Logistic回归模型的训练过程可以通过设置参数n_job来进行并行化处理。

参数n_job用于指定并行化的程度,其取值可以是正整数、-1或None。当n_job=-1时,表示使用所有可用的CPU核心进行并行计算。然而,对于sklearn Logistic回归模型来说,实际上并不会进行并行化处理。

这是因为Logistic回归模型的训练过程是基于迭代的优化算法,每次迭代都需要依赖上一次迭代的结果。由于并行化处理会导致迭代过程中的结果无法按顺序得到,因此在Logistic回归中并不适用并行化。

虽然sklearn库提供了并行化的选项,但在Logistic回归模型中并不推荐使用。如果需要并行化处理,可以考虑其他适用于并行计算的机器学习算法,如随机森林或梯度提升树等。

腾讯云提供了丰富的云计算产品和服务,包括云服务器、云数据库、云存储等。您可以访问腾讯云官方网站(https://cloud.tencent.com/)了解更多相关产品和服务的详细信息。

页面内容是否对你有帮助?
有帮助
没帮助

相关·内容

  • 学习笔记 | 吴恩达之神经网络和深度学习

    机器学习 机器学习研究的是计算机怎样模拟人类的学习行为,以获取新的知识或技能,并重新组织已有的知识结构使之不断改善自身。简单的说,就是计算机从数据中学习规律和模式,以应用在新数据上做预测的任务。 深度学习概念 深度学习指的是训练神经网络,有时候规模很大。 线性回归 回归函数,例如在最简单的房价预测中,我们有几套房屋的面积以及最后的价格,根据这些数据来预测另外的面积的房屋的价格,根据回归预测,在以房屋面积为输入x,输出为价格的坐标轴上,做一条直线最符合这几个点的函数,将它作为根据面积预测价格的根据,这条线就是

    04

    「数据科学家」必备的10种机器学习算法

    可以说,机器学习从业者都是个性迥异的。虽然其中一些人会说“我是X方面的专家,X可以在任何类型的数据上进行训练”,其中,X =某种算法;而其他一些人则是“能够在适合的工作中施展其才华”。他们中的很多人认可“涉猎所有行业,而是其中一个领域的专家”策略,即他们在一个领域内拥有一个深厚的专业知识,并且对机器学习的不同领域有所了解。 也就是说,没有人能否认这样的事实:作为数据科学家的实践者,我们必须了解一些通用机器学习的基础知识算法,这将帮助我们解决所遇到的新领域问题。本文对通用机器学习算法进行了简要的阐述,并列

    05

    【陆勤阅读】三个你在书中无法学到的数据分析知识

    在大数据特别热门的今天,出现了各种培训课程。但我发现这些课程的重点都放在算法的学习上。如何理解logistic回归或深度学习的确很酷,但一旦你开始处理数据,你会发现还有其他的东西更为重要。 我在大学里教了很多年的深度学习,这些课程和讲座总是特别注重特定的算法,你学习支持向量机器、高斯混合模型的聚类、k-均值等等,但是只有在你写硕士论文的时候你需要用到这些方法。 那么什么才是正确的呢?关键就是你要保证你做的模型对于未来的数据也能有好的表现。所以我在这里教你三个书本不能教给你的知识。 一、对模型的有正确的认识是

    07
    领券