数据长宽转换是很常用的需求,特别是当是从Excel中导入的汇总表时,常常需要转换成一维表(长数据)才能提供给图表函数或者模型使用。...转换之后,长数据结构保留了原始宽数据中的Name、Conpany字段,同时将剩余的年度指标进行堆栈,转换为一个代表年度的类别维度和对应年度的指标。(即转换后,所有年度字段被降维化了)。...而相对于数据宽转长而言,数据长转宽就显得不是很常用,因为长转宽是数据透视,这种透视过程可以通过汇总函数或者类数据透视表函数来完成。 但是既然数据长宽转换是成对的需求,自然有对应的长转宽函数。...pandas中的数据透视表函数提供如同Excel原生透视表一样的使用体验,即行标签、列标签、度量值等操作,根据使用规则,行列主要操作维度指标,值主要操作度量指标。...#列索引(可以使多个类别变量) values=["Sale"] #值(一般是度量指标) ) ?
数据框转换 继续学习如何将宽表格式数据框转换为darts数据结构。...Gluonts数据集是Python字典格式的时间序列列表。可以将长式Pandas数据框转换为Gluonts。...Gluonts--从长表格式 Pandas 数据框 gluons.dataset.pandas 类有许多处理 Pandas 数据框的便捷函数。...将图(3)中的宽格式商店销售额转换一下。数据帧中的每一列都是带有时间索引的 Pandas 序列,并且每个 Pandas 序列将被转换为 Pandas 字典格式。...当所有时间序列中存在一致的基本模式或关系时,它就会被广泛使用。沃尔玛案例中的时间序列数据是全局模型的理想案例。相反,如果对多个时间序列中的每个序列都拟合一个单独的模型,则该模型被称为局部模型。
本文介绍的是Pandas中4个行列转换的方法,包含: melt 转置T或者transpose wide_to_long explode(爆炸函数) 最后回答一个读者朋友问到的数据处理问题。...pandas中的T属性或者transpose函数就是实现行转列的功能,准确地说就是转置 简单转置 模拟了一份数据,查看转置的结果: [008i3skNgy1gxenewxbo0j30pu0mgdgr.jpg...] 最后看一个简单的案例: [008i3skNgy1gxenhj6270j30p20riwgh.jpg] wide_to_long函数 字面意思就是:将数据集从宽格式转换为长格式 wide_to_long...stubnames:宽表中列名相同的存部分 i:要用作 id 变量的列 j:给长格式的“后缀”列设置 columns sep:设置要删除的分隔符。...[008i3skNly1gxere8xz47j310w0ecwgk.jpg] 单个字段爆炸 对单个字段实施爆炸过程,将宽表转成长表: [008i3skNly1gxerf4aekzj30pu0j4ta8
如何在Pandas中实现高效的数据清洗和预处理? 在Pandas中实现高效的数据清洗和预处理,可以通过以下步骤和方法来完成: 处理空值: 使用dropna()函数删除含有缺失值的行或列。...大小写转换: 使用str.lower ()将所有字符转换为小写。 使用str.upper ()将所有字符转换为大写。...使用head()、tail()、info()等方法进行初步探索,了解数据的基本情况。 数据转换: 使用 melt()函数将宽表转换为长表。 使用 pivot_table()函数创建交叉表格。...Pandas提供了强大的日期时间处理功能,可以方便地从日期列中提取这些特征。...数据重塑(Data Reshaping) : 数据重塑是将数据从一种格式转换为另一种格式的过程,常见的方法有pivot和melt。这些方法可以用于将宽表数据转换为长表数据,或者反之。
当数据集中包含了分类变量和连续变量时,我们想了解连续变量是怎样随着不同的分类变量水平变化而变化,这时散点图中则会出现大量重叠,而箱式图则可以更清晰的展示这类数据。...箱式图用于多组数据平均水平和变异程度的直观分析比较。每组数据均可呈现其最小值、最大值、平均水平,最小值、最大值形成间距都可以反映数据的变异程度。 主要函数为geom_boxplot()。...1 原始数据 常规的表达矩阵每一行为一个基因,每一列为一个样本,如果拿到的数据不符合上述规则,首先需要对数据进行调整。 如果每一行为一个样本,每一列为一个基因则需要使用t()进行转置。...library(tibble) library(dplyr) dat = t(exp) %>% # “%>%”为管道符,相当于linux中的“|” as.data.frame() %>% # 只有数据框才能使用将行名变成一列的命令...列 转置后的表达矩阵 2.2 宽数据转换长数据 宽数据是比较常用的数据收集与储存样式,而长数据常用于画图,此处我们采用pivot_longer()进行转换,更多宽变长方法可参考简书教程[1]。
Pandas提供了强大的数据操作和分析功能,是数据科学的日常基本工具。在本文中,我们将介绍最常用的15个Pandas代码片段。这些片段将帮助简化数据分析任务,从数据集中提取有价值的见解。...它根据一个或多个列的值对数据进行重新排列和汇总,以便更好地理解数据的结构和关系。...下面是一个示例,演示如何使用 melt() 函数将宽格式数据转换为长格式,假设有以下的宽格式数据表格 df: ID Name Math English History 0 1...10、分类数据 astype('category') 是用于将一列数据类型转换为分类(Category)类型的方法。...将数据列转换为分类类型有助于节省内存和提高性能,特别是当数据列中包含有限的不同取值时。
当 df1 和 df2 有两个相同的列 (Asset 和 Instrument) 时,单单只对一列 (Asset) 做合并产出的 DataFrame 会有另一列 (Instrument) 重复的名称。...在 Pandas 里透视的方法有两种: 用 pivot 函数将「一张长表」变「多张宽表」, 用 melt 函数将「多张宽表」变「一张长表」, 本节使用的数据描述如下: 5 只股票:AAPL, JD,...前者将「一张长表」变成「多张宽表」 后者将「多张宽表」变成「一张长表」 具体来说,函数 melt 实际是将「源表」转化成 id-variable 类型的 DataFrame,下例将 Date 和 Symbol...Open, High, Low, Close, Adj Close 和 Volume value 列下的值为前者在「源表 data」中的值 函数 melt 可以生成一张含有多个 id 的长表,然后可在...---- 【透视数据表】用 pivot 函数将「一张长表」变成「多张宽表」,用 melt 函数将「多张宽表」变成「一张长表」。它们只是改变数据表的布局和展示方式而已。
数据框的长宽转换对于熟悉R语言的朋友而言,应该不会陌生。使用ggplot2画图时,最常用的数据处理就是长宽转换了。...在pandas中,也提供了数据框的长宽转换功能,有以下几种实现方式 1. stack stack函数的基本用法如下 >>> import pandas as pd >>> import numpy as...A 0.958544 B 0.085568 G3 A 0.041538 B 0.910649 G4 A 0.230912 B 0.500152 dtype: float64 用法很简单,将所有的列标签转换为行标签...,将对应的值转换为新的数据框中的某一列,从而实现了数据框由宽到长的转换。...,其中stack和melt实现数据框由宽到长的转换,unstack和pivot实现由长到宽的转换。
0 前言 在数据分析过程中,不同的软件通常对数据格式有一定的要求,例如R语言中希望导入的数据最好是长格式数据而不是宽格式数据,而SPSS软件经常使用宽格式数据。...特别说明:不要将长宽格数据转换为宽格式数据理解为数据透视表,长转宽只是数据存储形式发生变化,并不对操作对象进行计算,而数据透视表一般对操作对象进行某种操作计算(计数、求和、平均等)。...3 长转宽函数 Python实现 两种方法: 1 pandas库中的pivot()和privot_table()函数; 2 dfply库中的spread()函数; 方法一: ##构造数据...参数names_from对应长格式数据key键对应的列;values_from对应长格式数据value值对应的列。...4 宽转长函数 Python实现 Python中两种方法: 1 pandas库中的melt()函数; 2 dfply库中的gather()函数; ###构造数据集wide_data
= count) %>% # 长表转宽表 mutate(ratio = female_elected / male_elected) %>% # 统计性别比率 gather(key = category..., value = count, -constituency, -ratio) %>% # 宽表转长表 separate(category, into = c("gender", "status"...)) %>% # 将category列分成性别和状态两列 uncount(count) %>% # 根据count列的值,将行复制相应的次数 group_by(constituency, gender...status == "elected" & ratio == 1 ~ "Gender balance")) %>% mutate_if(is.character, factor) # 将字符列转换为因子...构建数据用于在图形中添加空白区域 dummy_constituency = tibble(y = c(-max(results$y), 0, 0, max(results$y)), # y值为最大最小值及其负值
重塑数据通常包括将数据从宽格式转换为长格式,或从长格式转换为宽格式。...1. pivot 和 pivot_table pivot 方法用于将长格式数据转换为宽格式数据,类似于 Excel 中的数据透视表。...['杭州', '赣州', '赣州', '杭州'], 'Temperature': [20, 30, 45, 40] } df = pd.DataFrame(data) # 使用 pivot 将长格式数据转换为宽格式...Date', columns='City', values='Temperature', aggfunc='mean') print(pivot_table_df) 2. melt melt 方法用于将宽格式数据转换为长格式数据...30 2 2024-06-01 杭州 20 3 2024-06-02 杭州 40 3. stack和 unstack stack 方法将数据的列索引转换为行索引
pandas系列10-数值操作2 本文是书《对比Excel,轻松学习Python数据分析》的第二篇,主要内容包含 区间切分 插入数据(行或列) 转置 索引重塑 长宽表转换 区间切分 Excel Excel...Python pandas中的转置只需要调用.T方法即可 ? 索引重塑 所谓的索引重塑就是将原来的索引重新进行构造。两种常见的表示数据的结构: 表格型 树形 下面?...把数据从表格型数据转换到树形数据的过程,称之为重塑reshape stack 该过程在Excel中无法实现,在pandas中是通过\color{red}{stack}方法实现的 ?...unstack 将树形数据转成表格型数据 ? 长宽表转换 长表和宽表 长表:很多行记录 宽表:属性特别多 Excel中的长宽表转换是直接通过复制和粘贴实现的。...在转换的过程中,宽表和长表中必须要有相同的列。比如将下图的宽表转成长表 宽表: ? 长表: ? 实现过程 stack方法 ? ?
以下函数很常用:duplicated: 识别DataFrame中是否有重复,可以指定使用哪些列来标识重复项。drop_duplicates:从 DataFrame 中删除重复项。...图片 8.数据透视Dataframe有 2 种常见数据:『宽』格式,指的是每一行代表一条记录(样本),每一列是一个观测维度(特征)。...『长』格式,在这种格式中,一个主题有多行,每一行可以代表某个时间点的度量。我们会在这两种格式之间转换。melt:将宽表转换为长表。...注意:重要参数id_vars(对于标识符)和 value_vars(其值对值列有贡献的列的列表)。pivot:将长表转换为宽表。...concat:沿行或列拼接DataFrame对象。当我们有多个相同形状/存储相同信息的 DataFrame 对象时,它很有用。
pandas 是做数据分析时的必备库。在数据分析之前,我们往往需要对数据的大小、内容、格式做一定处理,去掉无效值和缺失值,保持结构统一,使其便于之后的分析。这一过程被称作“数据清洗”。...今天我们就来分享几个Pandas在做数据清洗时的小技巧,内容不长,但很实用。 1....读取时抽样 1% 对于动辄就几十或几百个 G 的数据,在读取这么大数据时,有没有办法随机选取一小部分数据,然后读入内存,快速了解数据和开展 EDA ?...2. replace 做清洗 清洗数据时,少不了要对数据内容进行查找替换。 这里有一个快速清洗数据的小技巧,在某列上使用 replace 方法和正则,快速完成值的清洗。...(d) df 打印结果: customer sales 0 A 1100 1 B 950.5RMB 2 C $400 3 D $1250.75 看到 sales 列的值,有整型,浮点型+RMB后变为字符串型
1 读取时抽样 1% 对于动辄就几十或几百个 G 的数据,在读取这么大数据时,有没有办法随机选取一小部分数据,然后读入内存,快速了解数据和开展 EDA ?...format(df.shape)) 使用这种方法,读取的数据量迅速缩减到原来的 1% ,对于迅速展开数据分析有一定的帮助。...2 replace 做清洗 Pandas 的强项在于数据分析,自然就少不了对数据清洗的支持。 今天学习一个快速清洗数据的小技巧,在某列上使用 replace 方法和正则,快速完成值的清洗。...(d) df 打印结果: customer sales 0 A 1100 1 B 950.5RMB 2 C $400 3 D $1250.75 看到 sales 列的值,有整型,浮点型+RMB后变为字符串型...4 转 datetime 告诉年和 dayofyear,怎么转 datetime?
重塑 DataFrame 是数据科学中一项重要且必不可少的技能。在本文中,我们将探讨 Pandas Melt() 以及如何使用它进行数据处理。...例如, id_vars = 'Country' 会告诉 pandas 将 Country 保留为一列,并将所有其他列转换为行。...4 列开始的日期,并获取确认的日期列表 df.columns [4:] 在合并之前,我们需要使用melt() 将DataFrames 从当前的宽格式逆透视为长格式。...换句话说,我们将所有日期列转换为值。使用“省/州”、“国家/地区”、“纬度”、“经度”作为标识符变量。我们稍后将它们进行合并。...: 总结 在本文中,我们介绍了 5 个用例和 1 个实际示例,这些示例使用 Pandas 的melt() 方法将 DataFrame 从宽格式重塑为长格式。
().sum():统计每列缺失值的个数 #将数据按照指定列分组后统计每组中每列的缺失值情况,筛选出指定列存在缺失值的组并升序排列 data_c=data.groupby('所在小区').apply(lambda...()方法 多个 dataframe 连接(通过 index 匹配进行)(Join and Merge) 通过一个或多个键将两个数据集的列连接起来(完成 SQl 的 join 操作):pandas.merge...) 行列值的重塑(数据透视long→wide) 这部分主要介绍的是 pivot 函数,pivot 函数实现的是数据从长的形式向宽的形式的转换,一般意义上来说,我们认为存储在 csv 或者数据库中的文件属于长的格式...pivot 函数要做的其实就是根据一个 key 的离散取值来把长的表给变成宽的表。...对于非数值类数据的统计可以使用astype方法将目标特征的数据类型转换为category类别 Pandas 提供了按照变量值域进行等宽分割的pandas.cut()方法。
缺失值与重复值 Pandas清洗数据时,判断缺失值一般采用isnull()方法。...此外,isnull().any()会判断哪些”列”存在缺失值,isnull().sum()用于将列中为空的个数统计出来。...df.fillna(50) 输出: Pandas清洗数据时,判断重复值一般采用duplicated()方法。如果想要直接删除重复值,可以使用drop_duplicates() 方法。...melt()方法可以将宽表转长表,即表格型数据转为树形数据。...df.melt(id_vars="姓名", var_name="科目", value_name="成绩") 输出: pivot()方法可以将长表转宽表,即树形数据转为表格型数据。
,有位粉丝提到了一个牛逼的库,它巧妙的将Pandas与GUI界面结合起来,使得我们可以借助GUI界面来分析DATaFrame数据框。 基于此,我觉得有必要写一篇文章,再为大家做一个学习分享。...统计汇总 仔细观察下图,pandasgui会自动按列统计每列的数据类型、行数、非重复值、均值、方差、标准差 、最小值、最大值。 image.png 3....过滤 我们直接在Filters输入框中,输入a>=2,如下图所示。 image.png 输入公式后,接着点击Enter,即可完成对列的筛选。 image.png 4....交互式绘图 这里我们定义了一个3行2列的DataFrame,以a为横坐标,b为纵坐标进行绘图。...重塑功能 pandasgui还支持数据重塑,像数据透视表pivot、纵向拼接concat、横向拼接merge、宽表转换为长表melt等函数。 image.png 6.
dplyr 包的 distinct() 函数可以对数据框指定若干变 量,然后筛选出所有不同值,每组不同值仅保留一行。...%>% select(-name, -age) %>% head(n=3) %>% knitr::kable() 2.9 表格的长宽转换 gather/spread 可以将本来扁平的数据框变为宽长的数据框...宽长(一个维度对应一个数据)。...pivot_wider( names_from = c("sex", "type"), values_from = "count" ) %>% knitr::kable() 长宽混合转换 有时候,需要将数据框先转换为宽列表...,我们可以使用split 将数据框按某列拆分为多个数据框,并储存在列表中。
领取专属 10元无门槛券
手把手带您无忧上云