首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

当我们没有获得相应函数的指标时,如何记录Cosmos DB CountAsync和MaxAsync操作的RequestCharge?

当我们没有获得相应函数的指标时,可以通过以下方式记录Cosmos DB CountAsync和MaxAsync操作的RequestCharge:

  1. 使用Cosmos DB SDK提供的Diagnostic方法:Cosmos DB SDK提供了Diagnostic方法,可以在代码中调用该方法来获取操作的RequestCharge。通过在CountAsync和MaxAsync操作之后调用Diagnostic方法,可以获取到相应操作的RequestCharge值。
  2. 使用Cosmos DB的监控功能:Cosmos DB提供了监控功能,可以通过在Azure门户中配置监控指标来获取操作的RequestCharge。在监控指标中,可以选择CountAsync和MaxAsync操作,并查看相应的RequestCharge值。
  3. 使用Azure Monitor:Azure Monitor是一种云监控服务,可以用于监控和分析Azure资源的性能和运行状况。通过在Azure Monitor中配置相应的监控规则,可以获取CountAsync和MaxAsync操作的RequestCharge值,并将其记录下来。
  4. 使用自定义日志记录:在代码中添加自定义日志记录功能,可以在CountAsync和MaxAsync操作之后将RequestCharge值记录到日志文件中。可以使用各类日志记录框架,如log4net、NLog等,将RequestCharge值记录到指定的日志文件中。

无论使用哪种方式记录RequestCharge值,建议将其与其他相关指标一起记录,以便进行综合分析和性能优化。

页面内容是否对你有帮助?
有帮助
没帮助

相关·内容

  • 有趣的Hack-A-Sat黑掉卫星挑战赛——控制卫星载荷任务调度

    国家太空安全是国家安全在空间领域的表现。随着太空技术在政治、经济、军事、文化等各个领域的应用不断增加,太空已经成为国家赖以生存与发展的命脉之一,凝聚着巨大的国家利益,太空安全的重要性日益凸显[1]。而在信息化时代,太空安全与信息安全紧密地结合在一起。 2020年9月4日,美国白宫发布了首份针对太空网络空间安全的指令——《航天政策第5号令》,其为美国首个关于卫星和相关系统网络安全的综合性政策,标志着美国对太空网络安全的重视程度达到新的高度。在此背景下,美国自2020年起,连续两年举办太空信息安全大赛“黑掉卫星

    03

    某酒管集团-单例模式对性能的影响及思考

    摘要: 大概一年前开始在思考 构造函数中 依赖注入较多,这对系统性能及硬件资源消耗产生一些优化想法。一般较多公司的项目都使用Autofac 依赖注入(Scoped 作用域),但是发现过多的对象产生 会消耗 CPU , 内存 并给GC(垃圾回收)造成一定的压力。那么开始思考是否能够使用 单例 (Singleton)来解决这些问题呢?带着这些想法开始ReView整个项目的代码,排查是否存在 单例 会造成 线程安全 或 方法内修改全局变量的代码( 结果是乐观的.... )。于是开始了性能测试....论证.. 试运行... ,结果是超预期的(CPU 从 60%-降低到--》10%, 内存 从 33%-降低到--》20%, 接口平均响应时间 从 120毫秒--降低到--》50毫秒 . 1500/QPS (不含内部服务相互调用)) 和 @InCerry 沟通结果,说可以写个 案例 和大家分享分享... 于是乎 有了这一片文章。

    02

    大数据那些事(14):老东家的大数据

    这个系列写到现在,老东家微软的大数据平台Cosmos总是不可避免要介绍的。坦率得说,对于写和不写,应该怎么写,我一直很困惑。不写当然是简单的选择,没有是非不惹麻烦,但是难免会让这个系列不完整。写的话,也有很多的麻烦,老东家的大数据平台的确有不少公开的信息散落于互联网各地,包括若干论文,然而换句话来说,还有更多的保密的东西至今是没有公开的。所以这些东西从法律的角度我需要回避,不能够乱说。 所以我做个折中吧。文章中涉及到技术的问题,都是有据可查的,基于已经发表的论文和公开存在的演讲,博客等。文章中涉及到的评论,

    011

    吴寿鹤:Cosmos跨链协议研究

    基于 Tendermint 开发的链都可以采用同构跨链,cosmos 中同构链之间进行资产转移的原理如下。由于 Tendermint 采用 PBFT+POS 共识算法,每个区块都是经过全网 ⅔ 节点签名过的,所以得到 Validator 信息就可以通过对区块头进行校验来验证这个区块头是不是某一个链中的合法区块。ChainA,ChainB 都是用 Tendermint 开发的链,现在 ChainA,ChainB 之间需要进行跨链资产转移,第一步A,B 两个链之间会相互进行注册,在注册的过程中,A,B 两个链会将各自的创世区块以及 ChainID(用于表示不同链)发送给对方,由于创世区块中含有 Validator 信息,所以通过注册后 A,B 两个链会有对方链的 Validator 信息,以及区块头信息。现在 A 中的资产需要向 B 中转移,首先发送一个跨链交易 packageTx 到 A 中,A 执行这个 packageTx,将相关的资产进行销毁或锁定,接下来将 packageTx 写入 egress 中,egress 可以看成是一个信箱,所有向外部通知的跨链交易的都放入到egress 中。为了将 A 链中发生的事件通知给 B 链,需要一个relayer,relayer是一个中继程序负责将 A 链中 egress 中的跨链消息转发给 B 链,relayer查询 A 链中 egress 中的packageTx,并获取packageTx的Merkle Proof,将这些信息打包成 IBCPacketPostTx 交易发送到 B 链上,并查询 packageTx 所在的区块头信息,将区块头信息打包成 IBCUpdateChainTx 发送到 B 链上, 注意这里 relayer 是需要支付 IBCPacketPostTx,IBCUpdateChainTx 执行的交易费用的。B 链接收到 IBCPacketPostTx 交易后开始执行,首先通过 A 链中的 Validator 校验IBCUpdateChainTx 中的区块头是否是 A 链的,然后校验 IBCPacketPostTx 中跨链交易的Merkle proof 是否等于 IBCUpdateChainTx 中的区块头 hash。当所有校验全部通过时 B 链开始执行相关操作(在B链是生成相关资产等)[图片上传中...(image-b92935-1570973105363-3)]

    02
    领券