首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

panda python_12个很棒的Pandas和NumPy函数,让分析事半功倍

参考链接: Python | 使用Panda合并,联接和连接DataFrame 本文转载自公众号“读芯术”(ID:AI_Discovery)  大家都知道Pandas和NumPy函数很棒,它们在日常分析中起着重要的作用...Pandas非常适合许多不同类型的数据:  具有异构类型列的表格数据,例如在SQL表或Excel电子表格中  有序和无序(不一定是固定频率)的时间序列数据。  ...具有行和列标签的任意矩阵数据(同类型或异类)  观察/统计数据集的任何其他形式。实际上,数据根本不需要标记,即可放入Pandas数据结构。  ...以下是Pandas的优势:  轻松处理浮点数据和非浮点数据中的缺失数据(表示为NaN)  大小可变性:可以从DataFrame和更高维的对象中插入和删除列  自动和显式的数据对齐:在计算中,可以将对象显式对齐到一组标签...,用于从平面文件(CSV和定界文件)、 Excel文件,数据库加载数据,以及以超高速HDF5格式保存/加载数据  特定于时间序列的功能:日期范围生成和频率转换、移动窗口统计、日期移位和滞后。

5.1K00
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    通宵翻译Pandas官方文档,写了这份Excel万字肝货操作!

    在 Pandas 中,索引可以设置为一个(或多个)唯一值,这就像在工作表中有一列用作行标识符一样。与大多数电子表格不同,这些索引值实际上可用于引用行。...索引值也是持久的,所以如果你对 DataFrame 中的行重新排序,特定行的标签不会改变。 5. 副本与就地操作 大多数 Pandas 操作返回 Series/DataFrame 的副本。...在 Pandas 中,您需要在从 CSV 读取时或在 DataFrame 中读取一次时,将纯文本显式转换为日期时间对象。 解析后,Excel电子表格以默认格式显示日期,但格式可以更改。...在 Pandas 中,您通常希望在使用日期进行计算时将日期保留为日期时间对象。输出部分日期(例如年份)是通过电子表格中的日期函数和 Pandas 中的日期时间属性完成的。...列的选择 在Excel电子表格中,您可以通过以下方式选择所需的列: 隐藏列; 删除列; 引用从一个工作表到另一个工作表的范围; 由于Excel电子表格列通常在标题行中命名,因此重命名列只需更改第一个单元格中的文本即可

    19.6K20

    且用且珍惜:Pandas中的这些函数属性将被deprecated

    :单独def的叫函数,在类里def的叫方法) 弃用的参数,即虽然某一函数/方法仍在维护和使用,但其中的某一项参数不再提倡使用,当使用该函数的相应参数时触发相关warning 结合笔者对Pandas...具体来说,类似于Excel中的lookup的功能一样,Pandas中的lookup是一个DataFrame对象的方法,用于指定行索引和列名来查找相应结果,返回一个array结果,其函数签名文档如下:...You can use DataFrame.melt and DataFrame.loc as a substitute. # array([1, 2], dtype=int64) 当调用该函数时,给出了...02 dt.weekofyear属性 在Pandas中有一个非常好用的特性,叫做属性提取器(accessor),目前包括.str、.dt、.cat和.sparse四大类,不熟悉相关用法的可查看历史推文Panda...()函数时返回一个三列的dataframe,分别表示年、周和日信息,进一步取其week列即可实现weekofyear的效果。

    1.5K20

    pandas时间序列常用方法简介

    需要指出,时间序列在pandas.dataframe数据结构中,当该时间序列是索引时,则可直接调用相应的属性;若该时间序列是dataframe中的一列时,则需先调用dt属性再调用接口。...3.分别访问索引序列中的时间和B列中的日期,并输出字符串格式 ? 03 筛选 处理时间序列的另一个常用需求是筛选指定范围的数据,例如选取特定时段、特定日期等。...需注意的是该方法主要用于数据列的时间筛选,其最大优势在于可指定时间属性比较,例如可以指定time字段根据时间筛选而不考虑日期范围,也可以指定日期范围而不考虑时间取值,这在有些场景下是非常实用的。 ?...,无论是上采样还是下采样,其采样结果范围是输入记录中的最小值和最大值覆盖的范围,所以当输入序列中为两段不连续的时间序列记录时,可能会出现中间大量不需要的结果(笔者亲历天坑),同时在上图中也可发现从4小时上采样为...接受参数主要是periods:当其为正数时,表示当前值与前面的值相减的结果;反之,当其未负数时,表示当前值与后面的值相减。 ?

    5.8K10

    10快速入门Query函数使用的Pandas的查询示例

    PANDAS DATAFRAME(.loc和.iloc)属性用于根据行和列标签和索引提取数据集的子集。因此,它并不具备查询的灵活性。...返回的输出将包含该表达式评估为真的所有行。 示例1 提取数量为95的所有行,因此逻辑形式中的条件可以写为 - Quantity == 95 需要将条件写成字符串,即将其包装在双引号“”中。...其实这里的条件不一定必须是相等运算符,可以从==,!=,>,<,≥,≤中选择,例如 df.query("Quantity != 95") 文本列过滤 对于文本列过滤时,条件是列名与字符串进行比较。...日期时间列过滤 使用Query()函数在日期时间值上进行查询的唯一要求是,包含这些值的列应为数据类型dateTime64 [ns] 在示例数据中,OrderDate列是日期时间,但是我们的df其解析为字符串...OrderDate.dt.month显示了如何使用DT访问者仅提取整个日期值的月份值。

    4.5K10

    10个快速入门Query函数使用的Pandas的查询示例

    PANDAS DATAFRAME(.loc和.iloc)属性用于根据行和列标签和索引提取数据集的子集。因此,它并不具备查询的灵活性。...示例1 提取数量为95的所有行,因此逻辑形式中的条件可以写为 - Quantity == 95 需要将条件写成字符串,即将其包装在双引号“”中。...其实这里的条件不一定必须是相等运算符,可以从==,!=,>,<,≥,≤中选择,例如: df.query("Quantity != 95") 文本列过滤 对于文本列过滤时,条件是列名与字符串进行比较。...日期时间列过滤 使用Query()函数在日期时间值上进行查询的唯一要求是,包含这些值的列应为数据类型dateTime64 [ns] 在示例数据中,OrderDate列是日期时间,但是我们的df其解析为字符串...OrderDate.dt.month显示了如何使用DT访问者仅提取整个日期值的月份值。

    4.4K20

    一行代码将Pandas加速4倍

    这使得 Modin 的并行处理可扩展到任何形状的 DataFrame。 想象一下,如果给你一个列多行少的 DataFrame。有些库只执行跨行分区,在这种情况下效率很低,因为我们的列比行多。...panda的DataFrame(左)存储为一个块,只发送到一个CPU核。Modin的DataFrame(右)跨行和列进行分区,每个分区可以发送到不同的CPU核上,直到用光系统中的所有CPU核。...此函数查找 DataFrame 中的所有 NaN 值,并将它们替换为你选择的值。panda 必须遍历每一行和每一列来查找 NaN 值并替换它们。...在有些情况下,panda 实际上比 Modin 更快,即使在这个有 5,992,097(近 600 万)行的大数据集上也是如此。下表显示了我进行的一些实验中 panda 与 Modin 的运行时间。...正如你所看到的,在某些操作中,Modin 要快得多,通常是读取数据并查找值。其他操作,如执行统计计算,在 pandas 中要快得多。

    2.9K10

    为时间序列分析准备数据的一些简单的技巧

    下面是一些在不同领域的主题范围内查找数据的来源——有些是经过策划的,有些需要清理。你一定要从这个列表中找到你最喜欢的。...从前几行我们可以看到,数据集有两列,第一列表示“yyyy - mm”格式的日期列和具有实际观测值的值列。...记住,我们还不知道它是否是一个时间序列对象,我们只知道它是一个具有两列的dataframe。 df.info() ? 这个摘要确认了它是一个包含两列的panda dataframe。...最后一个好的实践是从datetime索引中提取年份、月份和工作日,并将它们存储在单独的列中。这给了一些额外的灵活性,“分组”数据根据年/月等,如果需要。...总之,我们已经做了一些事情来将我们的数据转换成一个时间序列对象: 1)将Month列从字符串转换为datetime; 2)将转换后的datetime列设置为索引; 3)从索引中提取年、月、日,并存储在新列中

    84330

    整理了10个经典的Pandas数据查询案例

    在开始之前,先快速回顾一下Pandas中的查询函数query。查询函数用于根据指定的表达式提取记录,并返回一个新的DataFrame。表达式是用字符串形式表示的条件或条件的组合。...PANDAS中的DATAFRAME(.loc和.iloc)属性用于根据行和列标签和索引提取数据集的子集。因此,它并不具备查询的灵活性。...其实这里的条件不一定必须是相等运算符,可以从==,!=,>,<,≥,≤中选择,例如: df.query("Quantity != 95") 文本过滤 对于文本列过滤时,条件是列名与字符串进行比较。...日期时间列过滤 使用query()函数在日期时间值上进行查询的唯一要求是,包含这些值的列应为数据类型dateTime64 [ns] 在示例数据中,OrderDate列是日期时间,但是我们的df其解析为字符串...OrderDate.dt.month显示了如何使用dt访问者仅提取整个日期值的月份值。

    24120

    整理了10个经典的Pandas数据查询案例

    在开始之前,先快速回顾一下Pandas中的查询函数query。查询函数用于根据指定的表达式提取记录,并返回一个新的DataFrame。表达式是用字符串形式表示的条件或条件的组合。...PANDAS中的DATAFRAME(.loc和.iloc)属性用于根据行和列标签和索引提取数据集的子集。因此,它并不具备查询的灵活性。...其实这里的条件不一定必须是相等运算符,可以从==,!=,>,<,≥,≤中选择,例如: df.query("Quantity != 95") 文本过滤 对于文本列过滤时,条件是列名与字符串进行比较。...日期时间列过滤 使用query()函数在日期时间值上进行查询的唯一要求是,包含这些值的列应为数据类型dateTime64 [ns] 在示例数据中,OrderDate列是日期时间,但是我们的df其解析为字符串...OrderDate.dt.month显示了如何使用dt访问者仅提取整个日期值的月份值。

    3.9K20

    盘点66个Pandas函数,轻松搞定“数据清洗”!

    此外,isnull().any()会判断哪些”列”存在缺失值,isnull().sum()用于将列中为空的个数统计出来。...clip()方法,用于对超过或者低于某些数的数值进行截断[1],来保证数值在一定范围。比如每月的迟到天数一定是在0-31天之间。...df["gender"].unique() df["gender"].nunique() 输出: 在数值数据操作中,apply()函数的功能是将一个自定义函数作用于DataFrame的行或者列;applymap...列操作 数据清洗时,会将带空值的行删除,此时DataFrame或Series类型的数据不再是连续的索引,可以使用reset_index()重置索引。...如果想直接筛选包含特定字符的字符串,可以使用contains()这个方法。 例如,筛选户籍地址列中包含“黑龙江”这个字符的所有行。

    3.8K11

    一行代码将Pandas加速4倍

    这使得 Modin 的并行处理可扩展到任何形状的 DataFrame。 想象一下,如果给你一个列多行少的 DataFrame。有些库只执行跨行分区,在这种情况下效率很低,因为我们的列比行多。...panda的DataFrame(左)存储为一个块,只发送到一个CPU核。Modin的DataFrame(右)跨行和列进行分区,每个分区可以发送到不同的CPU核上,直到用光系统中的所有CPU核。...此函数查找 DataFrame 中的所有 NaN 值,并将它们替换为你选择的值。panda 必须遍历每一行和每一列来查找 NaN 值并替换它们。...在有些情况下,panda 实际上比 Modin 更快,即使在这个有 5,992,097(近 600 万)行的大数据集上也是如此。下表显示了我进行的一些实验中 panda 与 Modin 的运行时间。...正如你所看到的,在某些操作中,Modin 要快得多,通常是读取数据并查找值。其他操作,如执行统计计算,在 pandas 中要快得多。

    2.6K10

    机器学习三剑客之PandasPandas的两大核心数据结构Panda数据读取(以csv为例)数据处理Pandas的分组和聚合(重要)

    Pandas是基于Numpy开发出的,专门用于数据分析的开源Python库 Pandas的两大核心数据结构 Series(一维数据) 允许索引重复 DataFrame(多特征数据,既有行索引...,又有列索引) # 创建一个3行4列的DataFrame类型数据 data_3_4 = pd.DataFrame(np.arange(10, 22).reshape(3, 4)) # 打印数据 print...(data_3_4) # 打印第一行数据 print(data_3_4[:1]) # 打印第一列数据 print(data_3_4[:][0]) DataFrame的属性 # 读取数据 result...直接删除数据(删除存在缺失值的样本) # 删除存在缺失值的样本 IMDB_1000.dropna() 不推荐的操作: 按列删除缺失值为IMDB_1000.dropna(axis=1) 存在缺失值,...替换为np.nan 小案例: 日期格式转换 数据来源 日期格式转换 # 读取前10行数据 train = pd.read_csv(".

    1.9K60

    浅谈NumPy和Pandas库(一)

    本文将聊一下NumPy和panda.DataFrames最基础的一些知识,前者能帮助你处理大量数值数据,后者帮你存储大型数据集以及从数据集中提取出来的信息。...Pandas中的数据经常包括在名为数据框架(data frame)的结构中,数据框架是已经标记的二维数据结构,可以让你根据需要选择不同类型的列,类型有字符串(string)、整数(int)、浮点型(float...下面假设我们有以下数据框架,由2列分别是’one’、’two’和四行’a’、’b’、’c’、’d’。值均为整数。...在本例中,我们重温一下之前numpy中提到的求平均数。numpy.mean对每个自成一列的向量求平均数,这本身就是一个新的数据结构。...另外还有一些操作不能通过这种方式向量化,例如提取numpy数组作为输入数据,然后返回其他数组或值。

    2.4K60

    Python工具分析风险数据

    Python中著名的数据分析库Panda Pandas库是基于NumPy 的一种工具,该工具是为了解决数据分析任务而创建,也是围绕着 Series 和 DataFrame 两个核心数据结构展开的,其中Series...在此小安一定一定要告诉你,小安每次做数据分析时必定使用的方法–describe方法。...一般来说,移除一些空值数据可以使用dropna方法, 当你使用该方法后,检查时发现 dropna() 之后几乎移除了所有行的数据,一查Pandas用户手册,原来不加参数的情况下, dropna() 会移除所有包含空值的行...移除proxy_host字段或srcip字段没有值的行 ? 移除所有行字段中有值属性小于10的行 5 统计分析 再对数据中的一些信息有了初步了解过后,原始数据有22个变量。...对数据列的丢弃,除无效值和需求规定之外,一些表自身的冗余列也需要在这个环节清理,比如说DataFrame中的index号、类型描述等,通过对这些数据的丢弃,从而生成新的数据,能使数据容量得到有效的缩减,

    1.7K90

    Pandas三百题

    2 - pandas 个性化显示设置 1.显示全部列 pd.set_option('display.max_columns',None) 2.显示指定行/列 指定让 data 在预览时显示10列,7行...-筛选行|判断(大于) 提取金牌数大于30的行 df[df['金牌数']>30] 31-筛选行|判断(等于) 提取金牌数等于10的行 df[df['金牌数']==10] 32-筛选行|判断(不等于) 提取金牌数不等于...'].isin(['中国','美国','英国','日本','巴西']))&(df['金牌数']<30) 36 -筛选行|条件(包含指定值) 提取 国家奥委会 列中,所有包含国的行 df[df['国家奥委会...'].str.contains('国')] 37-筛选某行某列 提取第0行第2列 df.iloc[0:1,[1]] 38-筛选多行多列 提取 第 0-2 行第 0-2 列 df.iloc[0:2,0:2...] 39-筛选值|组合(行号+列号) 提取第 4 行,第 4 列的值 df.iloc[3,3] 40 - 筛选值|组合(行号+列名) 提取行索引为 4 ,列名为 金牌数 的值 df.at[4,'金牌数'

    4.8K22

    特征工程与数据预处理全解析:基础技术和代码示例

    缺失值是现实世界数据集中常见的问题,处理丢失数据时要考虑的一个重要问题是丢失数据的随机性。...对于每个缺失值的样本,它找到K个最相似的完整样本。然后使用这些邻居的值来估计和填充缺失的数据。输入值通常是相邻值的平均值或中值。当丢失的数据不是随机的并且依赖于其他特征时,它特别有用。...在这种方法中,特征中的每个唯一类别成为一个新的二进制列。对于给定的类别,相应的列被设置为1(或“hot”),而所有其他列都被设置为0。这种方法允许在不暗示类别之间的任何顺序关系的情况下表示类别变量。...当一个分类变量有一些在数据集中很少出现的类别时,使用这种技术可以防止过拟合,降低这些罕见类别给模型带来的噪声。 将不常见的类别分组:将不常见的类别合并到一个“其他”类别中。...特征提取是机器学习和数据分析中的一项重要技术。

    25011

    玩转数据处理120题|Pandas版本

    ') 12 数据查看 题目:查看数据行列数 难度:⭐ Python解法 df.shape # (8, 2) 13 数据提取 题目:提取popularity列值大于3小于7的行 难度:⭐⭐ Python解法...Python解法 df.isnull().sum() 54 缺失值处理 题目:提取日期列含有空值的行 难度:⭐⭐ 期望结果 ?...327, 328]行位置有缺失值 列名:"日期", 第[327, 328]行位置有缺失值 列名:"前收盘价(元)", 第[327, 328]行位置有缺失值 列名:"开盘价(元)", 第[327, 328...Python解法 df.columns = ['col1','col2','col3'] 89 数据提取 题目:提取第一列中不在第二列出现的数字 难度:⭐⭐⭐ Python解法 df['col1'][~...', usecols=['positionName', 'salary'],nrows = 10) 102 数据读取 题目:从CSV文件中读取指定数据 难度:⭐⭐ 备注 从数据2中读取数据并在读取数据时将薪资大于

    7.6K41
    领券