深度优先遍历就是当我们搜索一个树的分支时,遇到一个节点,我们会优先遍历它的子节点直到最后根节点为止,最后再遍历兄弟节点,从兄弟子节点寻找它的子节点,直到搜索到最后结果,然后结束。
这样一个图中,是如何实现广度优先遍历的呢,首先,从1遍历完成之后,在去遍历2,3,4,最后遍历5 ,6 , 7 , 8。这也就是为什么叫做广度优先遍历,是一层一层的往广的遍历
图是由一组节点和连接这些节点的边组成的数据结构。图可以用于表示现实世界中的各种关系和网络。
2、新建队列,根节点入队,出队并访问队头,重复队头未访问的相邻节点2、3步,直至队列为空。
从实现的角度考虑,深度优先遍历可以采用递归,而广度优先就需要借助于先进先出的数据结构来实现了。
一、图的遍历 与树的遍历操作类同,图的遍历操作的定义是,访问途中的每个顶点且每个顶点之北访问一次。图的遍历方法有两种:一种是深度优先遍历,另一种是广度优先遍历。图的深度优先遍历类似于树的先根遍历,图的广度优先遍历类同于树的层序遍历。 图的遍历需要考虑的三个问题: (1)图的特点是没有首尾之分,所以算法的参数要指定访问的第一个顶点。 (2)因为对图的遍历路径有可能构成一个回路,从而造成死循环,所以算法设计要考虑遍历路径可能出现的死循环问题。 (3)一个顶点可能和若干个顶点都是邻接顶点,要使一个顶点的所有邻接顶点按照某种次序都被访问到。 二、连通图的深度优先遍历算法。 图的深度优先遍历算法是遍历时深度优先的算法,即在图的所有邻接顶点中,每次都在访问完当前节点后,首先访问当前顶点的第一个邻接顶点。 深度优先遍历算法可以设计成递归算法。对于连通图,从初始顶点出发一定存在路径和连通图中其它顶带相连,所以对于连通图来说,从初始顶点出发一定可以遍历该图。连通图的深度优先遍历递归算法如下。 (1)访问顶点v并标记顶点v已被访问。 (2)查找顶点v的第一个邻接顶点w. (3)若顶点v的邻接顶点w存在,则继续执行,否则算法结束。 (4)若顶点w尚未被访问,则深度优先遍历递归访问顶点w. (5)查找顶点v的w邻接顶点的下一个邻接顶点w,转到步骤(3). 上述递归算法属于回溯算法,当寻找顶点v的邻接顶点w成功时,继续进行;当寻找顶点v的邻接顶点w失败时,回溯到上一次递归调用的地方继续进行。 对于下图:
深度优先遍历(Depth First Search, 简称 DFS) 与广度优先遍历(Breath First Search)是图论中两种非常重要的算法,生产上广泛用于拓扑排序,寻路(走迷宫),搜索引擎,爬虫等,也频繁出现在 leetcode,高频面试题中。
深度优先遍历简称DFS(Depth First Search),广度优先遍历简称BFS(Breadth First Search),它们是遍历图当中所有顶点的两种方式。
在上一篇文章中,我们学习完了图的相关的存储结构,也就是 邻接矩阵 和 邻接表 。它们分别就代表了最典型的 顺序存储 和 链式存储 两种类型。既然数据结构有了,那么我们接下来当然就是学习对这些数据结构的操作啦,也就是算法的部分。不管是图还是树,遍历都是很重要的部分,今天我们就先来学习最基础的两种图的遍历方式。
最近有些偷懒,距离上次更新也有两个星期了,原因我也很清楚,就是又开始有些迷茫了,购买了不少课程,仍不能减轻内心的焦虑。焦虑的原因还是想得太多,做得太少,总想一口吃个胖子,而实际上,学习是有滞后性的,而且因人而异,因此学习时不应报着是否有用无用的功利心态,书到用时方恨少,学习重在积累,你学习到的知识可能短期内用不到,但说不定未来某天某个时机,或者眼界的提升都有助于未来的选择和发展,这样想,内心平静了许多。其实脚踏实地的去干就行了,空想无用,不如学也。
其实我们之前学过的二叉树的层序遍历就是一种广度优先遍历,要借助一个队列来搞,下面对图的广度优先遍历也是一样
从上到下打印二叉树,本质上考查对二叉树的「广度优先遍历」。而广度优先遍历需要采用队列进行数据的存放,具体代码如下:
图是一种非线性的数据结构,其中结点可以具有零个或多个相邻元素。两个结点之间的连接称为边。 结点也可以称为顶点。 如下图:
图的深度遍历和广度遍历都不算很难像极了二叉树的前序遍历和层序遍历,如下面的图,可以用右边的邻接矩阵进行表示,假设以顶点0开始对整幅图进行遍历的话,两种遍历方式的思想如下:
深度优先遍历 图的深度优先遍历类似于树的先序遍历,首先通过一个指定的节点开始遍历,然后访问第一个邻接点,然后切换到这个节点判断是否是否有邻接点,如果有,判断是否被访问过,如果没有被访问过,则访问这个节
小猿会从最基础的面试题开始,每天一题。如果参考答案不够好,或者有错误的话,麻烦大家可以在留言区给出自己的意见和讨论,大家是要一起学习的 。
按字典 wordList 完成从单词 beginWord 到单词 endWord 转化,一个表示此过程的 转换序列 是形式上像 beginWord -> s1 -> s2 -> ... -> sk 这样的单词序列,并满足:
和树的遍历类似,图的遍历也是从某个顶点出发,沿着某条搜索路径对图中所有顶点各做一次访问。
图的遍历和树的遍历类似,我们希望从图中某一顶点出发访遍图中其余顶点,且使每一个顶点仅被访问一次,这一过程就叫做图的遍历(Traverse Graph)。 图的遍历方法一般有两种,第一种是我们在前面讲过的《深度优先遍历(Depth First Search)》,也有称为深度优先搜索,简称为DFS。第二种是广度优先遍历(Breadth First Search),也有称为广度优先搜索,简称为BFS。我们在《队列与广度优先搜索》中已经较为详细地讲述了广度优先搜索的策略,这里不再赘述。如果说图的深度优先遍历类
首先,图可以分为有向图和无向图(这里只讨论无权图),像下面这个图就是无向图,V1 ~ V5 是图的顶点,而连接图的两个顶点的线就叫边或者专业一点的说法叫做:“度”,在无向图中,两个顶点之间的连线的方向可以是互换的,比如说,V1 顶点和 V2 顶点之间的边我们可以看做是以 V1 为起点, V2 为终点的一条边,也可以看做是以 V2 位起点, V1 位终点的一条边。由此,一个无向图的度的总数等于这个图中的边的总数的两倍,下面的那个图中一共有 7 条边,因为它是无向图,那么它的度的总数就是 14。
图是一种数据结构,其中结点可以具有零个或多个相邻元素。两个结点之间的连接称为边。 结点也可以称为
上一篇我们了解了图的基本概念、术语以及存储结构,还对邻接表结构进行了模拟实现。本篇我们来了解一下图的遍历,和树的遍历类似,从图的某一顶点出发访问图中其余顶点,并且使每一个顶点仅被访问一次,这一过程就叫做图的遍历(Traversing Graph)。如果只访问图的顶点而不关注边的信息,那么图的遍历十分简单,使用一个foreach语句遍历存放顶点信息的数组即可。但是,如果为了实现特定算法,就必须要根据边的信息按照一定的顺序进行遍历。图的遍历算法是求解图的连通性问题、拓扑排序和求解关键路径等算法的基础。
分析: 1.深度优先更适合目标比较明确,以找到目标为主要目的的情况 2.广度优先更适合在不断扩大遍历范围时找到相对最优解的情况
严蔚敏那本教材上的说法:一个深度为k,节点个数为 2^k – 1 的二叉树为满二叉树。这个概念非常好理解,
先遍历子节点,再遍历兄弟节点。 从根节点开始递归,如果存在子节点,继续遍历子节点。
1.图的深度优先遍历类似前序遍历,图的广度优先类似树的层序遍历 2.将图进行变形,根据顶点和边的关系进行层次划分,使用队列来进行遍历 3.广度优先遍历的关键点是使用一个队列来把当前结点的所有下一级关联点存进去,依次进行 邻接矩阵的广度优先遍历: BFS(G) for i=0;i<G->numVertexes;i++ visited[i]=false;//检测是否访问过 for i=0;i<G.numVertexes;i++//遍历顶点 if visited[
【面试题】实现文件夹中文件的遍历输出文章中,我们用递归和深度遍历的方式实现了循环遍历输入文件夹中的文件。有没有基于广度优先遍历文件的方式呢,其实是有的。我们看下具体是怎么实现的。
1、图的遍历 和树的遍历类似,图的遍历也是从某个顶点出发,沿着某条搜索路径对图中每个顶点各做一次且仅做一次访问。它是许多图的算法的基础。 深度优先遍历和广度优先遍历是最为重要的两种遍历图的方法。它们对无向图和有向图均适用。 注意: 以下假定遍历过程中访问顶点的操作是简单地输出顶点。 2、布尔向量visited[0..n-1]的设置 图中任一顶点都可能和其它顶点相邻接。在访问了某顶点之后,又可能顺着某条回路又回到了该顶点。为了避免重复访问同一个顶点,必须记住每个已访问的顶点。为此,可设一布尔向量visited[0..n-1],其初值为假,一旦访问了顶点Vi之后,便将visited[i]置为真。 深度优先遍历(Depth-First Traversal) 1.图的深度优先遍历的递归定义 假设给定图G的初态是所有顶点均未曾访问过。在G中任选一顶点v为初始出发点(源点),则深度优先遍历可定义如下:首先访问出发点v,并将其标记为已访问过;然后依次从v出发搜索v的每个邻接点w。若w未曾访问过,则以w为新的出发点继续进行深度优先遍历,直至图中所有和源点v有路径相通的顶点(亦称为从源点可达的顶点)均已被访问为止。若此时图中仍有未访问的顶点,则另选一个尚未访问的顶点作为新的源点重复上述过程,直至图中所有顶点均已被访问为止。 图的深度优先遍历类似于树的前序遍历。采用的搜索方法的特点是尽可能先对纵深方向进行搜索。这种搜索方法称为深度优先搜索(Depth-First Search)。相应地,用此方法遍历图就很自然地称之为图的深度优先遍历。 2、深度优先搜索的过程 设x是当前被访问顶点,在对x做过访问标记后,选择一条从x出发的未检测过的边(x,y)。若发现顶点y已访问过,则重新选择另一条从x出发的未检测过的边,否则沿边(x,y)到达未曾访问过的y,对y访问并将其标记为已访问过;然后从y开始搜索,直到搜索完从y出发的所有路径,即访问完所有从y出发可达的顶点之后,才回溯到顶点x,并且再选择一条从x出发的未检测过的边。上述过程直至从x出发的所有边都已检测过为止。此时,若x不是源点,则回溯到在x之前被访问过的顶点;否则图中所有和源点有路径相通的顶点(即从源点可达的所有顶点)都已被访问过,若图G是连通图,则遍历过程结束,否则继续选择一个尚未被访问的顶点作为新源点,进行新的搜索过程。 3、深度优先遍历的递归算法 (1)深度优先遍历算法 typedef enum{FALSE,TRUE}Boolean;//FALSE为0,TRUE为1 Boolean visited[MaxVertexNum]; //访问标志向量是全局量 void DFSTraverse(ALGraph *G) { //深度优先遍历以邻接表表示的图G,而以邻接矩阵表示G时,算法完全与此相同 int i; for(i=0;i<G->n;i++) visited[i]=FALSE; //标志向量初始化 for(i=0;i<G->n;i++) if(!visited[i]) //vi未访问过 DFS(G,i); //以vi为源点开始DFS搜索 }//DFSTraverse (2)邻接表表示的深度优先搜索算法 void DFS(ALGraph *G,int i){ //以vi为出发点对邻接表表示的图G进行深度优先搜索 EdgeNode *p; printf("visit vertex:%c",G->adjlist[i].vertex);//访问顶点vi visited[i]=TRUE; //标记vi已访问 p=G->adjlist[i].firstedge; //取vi边表的头指针 while(p){//依次搜索vi的邻接点vj,这里j=p->adjvex if (!visited[p->adjvex])//若vi尚未被访问 DFS(G,p->adjvex);//则以Vj为出发点向纵深搜索 p=p->next; //找vi的下一邻接点 } }//DFS (3)邻接矩阵表示的深度优先搜索算法 void DFSM(MGraph *G,int i) { //以vi为出发点对邻接矩阵表示的图G进行DFS搜索,设邻接矩阵是0,l矩阵 int j; printf("visit vertex:%c",G->vexs[i]);//访问顶点vi visited[i]=TRUE; for(j=0;j<G->n;j++) //依次搜索vi的邻接点 if(G->edges[i][j]==1&&!vi
输入:n = 3, graph = [[0, 1], [0, 2], [1, 2], [1, 2]], start = 0, target = 2
二叉树的两种遍历是数据结构的经典考察题目, 广度遍历考察队列结构, 深度遍历考察递归 二叉树 深度优先 先序遍历(父, 左子, 右子) 0, 1, 3, 7, 8, 4, 9, 2,
图 图的表示方式有两种:二维数组表示(邻接矩阵);链表表示(邻接表)。 邻接矩阵是表示图形中顶点之间相邻关系的矩阵,对于n个顶点的图而言,矩阵是的row和col表示的是1….n个点。 邻接表的实现只关心存在的边,不关心不存在的边。因此没有空间浪费,邻接表由数组+链表组成 图的遍历 : 即是对结点的访问。 图的深度优先搜索(Depth First Search) 。 深度优先遍历,从初始访问结点出发,初始访问结点可能有多个邻接结点,深度优先遍历的策略就是首先访问第一个邻接结点,然后再
算法的重要性,我就不多说了吧,想去大厂,就必须要经过基础知识和业务逻辑面试+算法面试。所以,为了提高大家的算法能力,这个公众号后续每天带大家做一道算法题,题目就从LeetCode上面选 !
深度优先和广度优先算法在爬取一个整站上经常用到,本课程主要讲解这两个算法的原理以及使用过程。 一、网站的树结构 1.1、一个网站的url结构图 以知乎为例,知乎目前有发现、话题、Live、书店、圆桌、专栏主要的6个tab页。每个网站的url都是有一定的层次,如下图:发现explore、话题topic、Live lives、书店pub、圆桌roundtable、专栏zhuanlan都是在主域名zhihu的下一级,而具体的Live在zhuhu.com/lives/770340328338104320,内容又在话
图的周游:是一种按某种方式系统地访问图中的所有节点的过程,它使每个节点都被访问且只访问一次。图的周游也称图的遍历。
广度优先搜索(breadth-first search)和深度优先搜索(depth-first search)是两种探索图/树中顶点的思路。这两种搜索方式可以用来查找图中某个指定的顶点,也可以用来对图中顶点进行遍历。
你通过遍历来使⽤它们,要么⽤⼀个“for”循环,要么将它们传递给任意可以进⾏迭代的函数和结构。
对于图中每个顶点 vi,把所有邻接于 vi的顶点(对有向图是将从vi出发的弧的弧头顶点链接在一起)链接成一个带头结点的单链表,将所有头结点顺序存储在一个一维数组中。 例:下面左图G2对应的邻接表如右边所示。
一、广度优先遍历 上次我们浅谈了图的深度优先遍历,接下来我们使用广度优先搜索来遍历这个图: 这五个顶点被访问的顺序如下图所示: 二、实现过程 广度优先搜索过程如下: 首先以一个未被访问过的顶点作为起始
图跟树一样,也是非线性结构,咋看起来有点复杂,其实它很简单。树具有层次关系,上层元素可以与下一个多个元素连接,但是只能和上层的一个元素连接。在图结构中,节点间的连接是任意的,任何一个元素都可以与其他元素连接。
层序遍历使用的时广度优先遍历,使用队列存取,先进先出,与广度优先遍历不同的是,广度优先遍历返回一个一维数组,不分层级,层序遍历分层级,返回多维数组,在每次遍历的过程中,把整层节点都处理完之后,再处理下一层
版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/sinat_35512245/article/details/54586938
(1)深度优先遍历,从初始访问节点出发,初始访问节点可能有多个邻接点,深度优先遍历的策略就是首先访问第一个邻接点,然后再以这个被访问的邻接点作为初始节点,访问它的第一个邻接点,可以这样理解:每次都在访问完当前节点后首先访问当前节点的第一个邻接点。
给你二叉树的根节点 root ,返回其节点值的 层序遍历 。(即逐层地,从左到右访问所有节点)。
图作为数据结构书中较为复杂的数据结构,对于图的存储方式分邻接矩阵和邻接表两种方式。在这篇博客中,主要讲述邻接矩阵下的图的深度优先遍历(DFS)与广度优先遍历(BFS)。
3,深度优先遍历:深度优先一般是递归解,每次递归的时候记录当前访问的深度,递归过程中对相同深度的取最大值。
给你二叉树的根节点 root 和一个表示目标和的整数 targetSum 。判断该树中是否存在 根节点到叶子节点 的路径,这条路径上所有节点值相加等于目标和 targetSum 。如果存在,返回 true ;否则,返回 false 。
给你二叉树的根节点 root ,返回其节点值的 层序遍历 。 (即逐层地,从左到右访问所有节点)。
领取专属 10元无门槛券
手把手带您无忧上云