并行数据库系统是新一代高性能数据库系统,致力于开发数据库操作的时间并行性和空间并行性,是当今研究热点之一。并行数据库技术起源于20世纪70年代的数据库机研究,希望通过硬件实现关系操作的某些功能。研究主要集中在关系代数操作的并行化和实现关系操作的专用硬件设计上。80年代后,逐步转向通用并行机的研究。90年代以后,存储技术、网络技术、微机技术的迅猛发展,以及通用并行计算机硬件的发展,为并行数据库技术的研究奠定了基础。
本文以我个人的理解简单分析下并行数据库的技术要点以及对未来并行数据库的发展做下展望,理解有偏差的地方,欢迎各位指正。 并行数据库的定义 在维基百科上,并行数据库被定义为通过并行使用多个CPU和磁盘来将诸如装载数据、建立索引、执行查询等操作并行化以提升性能的数据库系统。其中最重要的关键词是并行,分布式。 并行数据库的技术要点 并行数据库主要由执行引擎、存储引擎和管理功能模块组成,它们的不同技术风格形成了各个有特色的并行数据库产品。随着Hadoop的兴起,目前MPP数据库主要分成两类
最早的数据库是在单台支持多任务的物理机器上运行的,这种集中式的数据库系统仍然在被广泛使用,如今在集中式数据库系统上运行的企业级应用可能拥有成千上万的用户,数据库的规模从兆字节到数百G字节不等。
彭渊,在Java技术领域从业十多年,曾撰写多款开源软件,历任淘宝高级专家和华为中间件首席架构师。开源代表作有Fourinone(四不像)分布式核心技术框架、CoolHash并行数据库引擎等,曾出版书籍《大规模分布式系统架构与设计实战》。 以下为作者分享的整理: 前言:“如何用70行java代码实现深度神经网络算法”一文发表后,反响非常好,为此非常感谢CSDN架构编辑钱曙光先生和机器学习编辑周建丁先生对中国原创技术实践的支持,并接受邀请,就各位朋友感兴趣的分布式核心技术Fourinone(四不像)和高性能
(1)第一代数据库系统是指层次模型数据库系统(基于树形结构)和网状模型数据库系统(基于有向图结构)
随着计算机的飞速发展,网站产生了大量数据,数据规模远超传统数据库系统能够处理的规模,我们把具有量大,存储速度要求高,数据多样性丰富的特征的数据统称为大数据。
事务是数据库系统运行的基本工作单位,相当于操作系统中的进程,事务具有ACID特性。从用户的角度来看,事务中的操作要么都做,要么都不做。
南大通用的 GBase 数据库在墨天轮国产数据库排行榜 20 年底的最后两月还一度上升到第三名,这是值得可喜可贺的,在本月排名为第七名,得分为 336.03,分数较上月增加了 23.13,总体而言一直处于上升趋势,希望 GBase 数据库再接再厉更上一层楼。
<数据猿导读> 大数据浪潮,汹涌来袭,与互联网的诞生一样,这绝不仅仅是信息技术领域的升级,更是在全球范围企业加速创新、社会加速变革的利器。未来的营销会是精准化营销,搜集数据时一定要按数据的组合进行整理
本文思路,看图说话,一张图,清晰总结二者区别 下面对图中的各条做详细总结 1 查询语言 不做赘述 2 数据存储位置 不做赘述 3 数据格式 Hive:Hive
2018年10月25日2ndQuadrant发布了Postgres-XL 10R1版本。Postgres-XL是一个大规模并行数据库,它基于PG社区版本开发,并和PG高度兼容,支持Business Intelligence负载和读写大事务负载。
如果你使用的是centOS系统,或者支持yum的系统,那么可以通过如下方式进行安装:
Batch:批处理 MPP:大规模并行处理 Cube:多维立方体 Hadoop:是一款支持数据密集型分布式应用程序
GPU承诺会彻底改变大数据分析领域,从当前来看,这并不是虚言,当我们数据量达到一定级别的时候,我们一定会转向使用GPU。大多数的数学密集型应用都包含机器学习框架,也都会利用GPU的并行处理能力来加速计算。 GPU和数据库各有所长,GPU擅长处理需要大量数学密集型运算的任务,比如视觉模拟、超快数据库事务、计算视觉和机器学习等任务,而数据库擅长有特定要求的计算,如比较复杂的连接计算。下面为大家介绍五款提供GPU加速的数据库解决方案产品,其中有三款是商业产品,剩下的是开源产品。 MapD MapD是由麻省理工
VLDB 2019(Very Large Data Bases)于2019.8.26 – 2019.8.30在洛杉矶召开,腾讯TDSQL分布式数据库团队带来现场报道。
VLDB 2019(Very Large Data Bases)于2019.8.26-2019.8.30在洛杉矶召开,腾讯TDSQL分布式数据库团队带来现场报道。 VLDB是三大国际顶尖数据库会议之一(其余二者为SIGMOD和ICDE),根据大会官方公布,今年VLDB共接收了128篇Research Paper、22篇IndustryPaper和48个Demo。 (敬请期待TDSQL后续精彩论文解读) Keynote 本届VLDB带来三个Keynote,角度分别为:尝试从不同的技术角度更优雅地解决应用
由于Hive采用了SQL的查询语言HQL,因此很容易将Hive理解为数据库。其实从结构上来看,Hive和数据库除了拥有类似的查询语言,再无类似之处。数据库可以用在Online的应用中,但是Hive是为数据仓库而设计的,清楚这一点,有助于从应用角度理解Hive的特性。
SQL Server 2012与SQL Server 2008最重要的区别之一就是与Hadoop的兼容性。Hadoop允许用户处理大量的结构化和非结构化数据并快速从中获得观点,而且,因为Hadoop是开源的,成本较低。Hadoop与SQL Server 2012兼容的特性是微软与Hortonworks合作开发的,微软最近也宣布Microsoft HDInsight Server和Windows Azure HDInsight Service已经可以预览,这都使用户能够使用微软开发的Hadoop连接器来从数据
1、跟Hadoop生态系统完好结合,可与Hive Metastore对接,处理hive中的表,可直接处理存储在HDFS和Hbase中的数据。
后来看到了Snowflake CTO Benoit Dageville 的一个分享,也提到了这一观点,原来数据交换市场概念出处是在这里。
最近接触的一些项目大搞国产化,著名的关系型数据库厂商都在美国,有Oracle的Oracle和MySQL数据库、IBM的DB2、微软的SQL Server等。今天细说一下国内的数据库厂商。
Hive:由 Facebook 开源用于解决海量结构化日志的数据统计。 Hive 是基于 Hadoop 的一个数据仓库工具,可以将结构化的数据文件映射为一张表,并 提供类 SQL 查询功能。 本质是:将 HQL 转化成 MapReduce 程序
Hadoop开源社区新技术层出不穷,大家可能对Map/Reduce(YARN)/Spark很熟悉,最近又新增了一个Flink,也是大有来头。 Apache Flink是一个高效、分布式、基于Java实现的通用大数据分析引擎,它具有分布式MapReduce一类平台的高效性、灵活性和扩展性以及并行数据库查询优化方案,它支持批量和基于流的数据分析,且提供了基于Java和Scala的API。从Apache官方博客中得知,Flink已于近日升级成为Apache基金会的顶级项目。 从Flink官网得知,其具有如下主要
作为一种革命性的信息技术,大数据技术正在赋予数据生命和更多的商业价值。借助大数据进行舆情分析,将大数据应用到交通系统建设,用大数据预测赛事结果,以大数据辅助医疗……可以说,大数据正在我们的生活中发挥大用途。对于个人而言,大数据带来了便利;对于企业而言,如何应用好大数据更是关系到未来的竞争甚至存亡。 大数据时代到来,企业面临的竞争环境发生了巨大变化。企业拥有的知识、情报和其他数据资产的数量及其应用效率已成为企业能否取得市场竞争优势的重要因素之一。为此,国内电信运营商的集团公司和很多省分公
摘 要 Hive是基于Hadoop的一个数据仓库工具,可以将结构化的数据文件映射为一张数据库表,并提供类SQL查询功能。 Hive简介 什么是Hive Hive是基于Hadoop的一个数据仓库工具,可以将结构化的数据文件映射为一张数据库表,并提供类SQL查询功能。 为什么使用Hive 直接使用hadoop所面临的问题: 人员学习成本太高 项目周期要求太短 MapReduce实现复杂查询逻辑开发难度太大 为什么要使用Hive: 操作接口采用类SQL语法,提供快速开发的能力。 避免了去写MapReduce,减
Codegen在spark中的应用 除了前面查询优化中讲到逻辑优化器之外,Spark在1.5版本中引入了比较大的一个动作就是DataFrame执行后端的优化,引入了codegen技术。(Tungste
当前的大环境和技术氛围,提供给国产化技术厂商一个千载难逢的推广机会,操作系统、数据库、中间件、办公终端各领域,无论是供应商,还是使用者,比以往任何时候都更积极和主动,并且更具成效。
Sqoop/Canal:关系型数据收集和导入工具,是连接关系型数据库和Hadoop的桥梁,Sqoop可将关系型数据库的数据全量导入Hadoop,反之亦然。而Canal可用于实时数据的增量导入
https://github.com/Snailclimb/JavaGuide Star 26396
Presto是Facebook开源的MPP(Massive Parallel Processing)SQL引擎,其理念来源于一个叫Volcano的并行数据库,该数据库提出了一个并行执行SQL的模型,它被设计为用来专门进行高速、实时的数据分析。
数据库管理系统就是由互相关联的数据集合和一组用于访问这些数据的程序组成,简称数据库。即,数据库=数据+程序。数据库的目标就是方便、高效、安全的存储、管理数据信息。
1. 什么是实时分析(在线查询)系统? 大数据领域里面,实时分析(在线查询)系统是最常见的一种场景,通常用于客户投诉处理,实时数据分析,在线查询等等过。因为是查询应用,通常有以下特点: a. 时延低(秒级别)。 b. 查询条件复杂(多个维度,维度不固定),有简单(带有ID)。 c. 查询范围大(通常查询表记录在几十亿级别)。 d. 返回结果数小(几十条甚至几千条)。 e. 并发数要求高(几百上千同时并发)。 f. 支持SQL(这个业界基本上达成共识了,原因是很难找到一个又会数据分析,还能写JAVA代码的分析
2021年11月4日,北京市公安局发布云计算平台建设项目(二期)招标公告,预算28517.61万元。 第1包软硬件购置与研发集成、测评:预算28286.93万元 第2包监理服务:预算230.68万元 项目概述 为深入贯彻全面深化公安改革总体要求,大力实施“科技兴警”战略,积极稳妥推动云计算技术在公安行业的落地应用,切实提高信息化基础设施保障水平,北京市公安局将大力推动市局云计算平台,逐步实现各类软硬件资源集约整合和信息资源高度共享。 市局于2019年9月建设完成“祥云北京警务云平台(一期)”(以下简称“云平
今天,我们一起来盘点一下2月份GitHub上最热门的Java开源项目,本月上榜的不仅有Java学习指南JavaGuide、滴滴研发助手DoraemonKit、微服务架构fescar......
PayPal高级工程总监Anil Madan写了这篇大数据的文章,一共有100篇大数据的论文,涵盖大数据技术栈,全部读懂你将会是大数据的顶级高手。当然主要是了解大数据技术的整个框架,对于我们学习大数据有莫大好处。
https://github.com/Snailclimb/JavaGuide Star 22668
1月份GitHub上最热门的Java开源项目新鲜出炉,还是一起来看看都有哪些项目上榜吧:
2021年11月4日,北京市公安局发布云计算平台建设项目(二期)招标公告,预算28517.61万元。 2021年12月1日中标公告发布,联通数字 2.47 亿元中标(第一包)、北咨信息 149 万元中标(第二包)。 第1包:软硬件购置与研发集成、测评 预算28286.93万元 联通数字科技有限公司 24699.999 万元中标。 投标报价表: 2019年3月18日,北京市公安局祥云北京警务云平台(一期)项目政府采购项目(第一包)中标公告发布,华迪计算机集团有限公司 7
分析:Hadoop的核心组件分为:HDFS(分布式文件系统)、MapRuduce(分布式运算编程框架)、YARN(运算资源调度系统)
一般情况下,大数据平台指的是使用了Hadoop、Spark、Storm、Flink、Blink等这些分布式、实时或者离线计算框架,并在上面运行各种计算任务的平台。
我是看李海翔的《数据库技术丛书·数据库查询优化器的艺术:原理解析与SQL性能优化》这本书的视频讲解学习的,因为数据库的知识学的不多,直接看优化有些吃力,慢慢补吧。现在要用一些优化的知识只能先看着了。
大数据技术应用于大数据系统端到端的各个环节,包括数据接入、数据预处理、数据存储、数据处理、数据可视化、数据治理,以及安全和隐私保护等。
http://blog.sina.com.cn/s/blog_6a7df1f1010197d2.html 在Hive中,某些小技巧可以让我们的Job执行得更快,有时一点小小的改动就可以让性能得到大幅提升,这一点其实跟SQL差不多。 首先,Hive != SQL,虽然二者的语法很像,但是Hive最终会被转化成MapReduce的代码去执行,所以数据库的优化原则基本上都不适用于 Hive。也正因如此,Hive实际上是用来做计算的,而不像数据库是用作存储的,当然数据库也有很多计算功能,但一般并不建议在SQL中大
自从Dremel出来以后,跟风的行动就开始了。狗狗出品,必有跟屁虫,必有抄袭者,更有炒作的。Cloudera最开始宣传的时候,在2012年,它们做的一个新系统叫Impala,是Dremel的开源版。当然,其他两家批发商也没闲着,MAPR搞了个Drill,Hortonworks也许最忽悠也许最实际,说我们只需要改善 Hive就好,没必要搞其他飞机。 这个事情后来的发展,当然是Hortonworks继续搞它的HIVE,MapR现在天天叫着Drill是Dremel的开源实现。而Cloudera很早之前就悄悄的
在浩渺的历史长河中,每一个时代都有其独特的印记。对于中国数据库行业而言,同样如此,中国数据库行业作为信息时代发展的重要支柱,其发展历程同样波澜壮阔。《中国数据库系列纪录片》不仅为观众呈现了这一行业的演变,更让我深刻体会到了其中的技术革新和人文情怀。在《中国数据库系列纪录片》的影像之中,会给人一种身临其境,仿佛跨越了时空的界限,亲身经历了中国数据库从蹒跚学步到如今蓬勃发展的五十载历程。其中,90年代的混沌竞争时期,更是给我留下了深刻的印象。
目前,随着大型决策支持系统的发展,其支撑数据库的执行效率已经成为制约整个企业信息系统性能和效率提升的瓶颈。[1]尤其在电子商务领域,联机事务分析(OLAP)应用越来越广泛,对性能的要求也越发紧迫。联机事务分析是以多维度的方式分析数据,能弹性地提供积存、下钻和枢纽分析等操作,呈现集成性决策信息的方法。其目前主要处理兆兆(T)字节的数据,满足复杂的查询需求,尤其是对多张表中的千万条记录的数据进行数据分析和信息综合。而目前上述需求在关系数据库中已经不能完全的得到满足。[2]同时,商业应用领域对性能、可靠性和性价比的苛刻要求,催生了数据库集群的广泛应用[3]。数据库集群分为共享集群和非共享集群,而针对决策支持系统的业务处理,非共享集群有其固有的优势。[4]
Hadoop分布式文件系统是Hadoop项目的两大核心之一,是针对谷歌文件系统(GoogleFileSystem,GFS)的开源实现。是Hadoop体系中数据存储管理的基础。它是一个高度容错的系统,能检测和应对硬件故障,用于在低成本的通用硬件上运行。HDFS简化了文件的一致性模型,通过流式数据访问,提供高吞吐量应用程序数据访问功能,适合带有大型数据集的应用程序。
今天为大家推荐一些翻译整理的大数据相关的学习资源,希望能给大家带来价值。
大数据已经逐渐普及,大数据处理关键技术一般包括:大数据采集、大数据预处理、大数据存储及管理、大数据分析及挖掘、大数据展现和应用(大数据检索、大数据可视化、大数据应用、大数据安全等)。
大数据技术的发展是一个非常典型的技术工程的发展过程,荣辛通过对于谷歌经典论文的盘点,希望可以帮助工程师们看到技术的探索、选择过程,以及最终历史告诉我们什么是正确的选择。
领取专属 10元无门槛券
手把手带您无忧上云