推理系统是一个专门用于部署神经网络模型,执行推理预测任务的 AI 系统。它类似于传统的 Web 服务或移动端应用系统,但专注于 AI 模型的部署与运行。...最后,通过比较推理系统与推理引擎的流程结构,将进一步揭示两者在设计和实施时需考虑的关键要素。AI 生命周期在日常生活中,深度学习的相关方法已经广泛的部署到各类的应用当中。...根据上图示的 AI 框架、推理系统与硬件之间的关系,可以看到,除了应对应用场景的多样化需求,推理系统还需克服由不同训练框架和推理硬件所带来的部署环境多样性挑战,这些挑战不仅增加了部署优化和维护的难度,而且易于出错...通过这些策略,系统能够在用户或设备需求不断增长的情况下保持高性能和稳定性,确保推理服务能够满足不断变化的市场需求。可靠性(Reliability)最后,可靠性是保障推理服务持续运行和用户体验的关键。...通过这些措施,可以大大增强系统的可靠性,确保推理服务能够稳定运行,为用户提供持续不间断的服务体验。设计约束在设计推理系统时,除了之前提到的优化目标外,还需考虑满足更多的约束。
推理的最终目标,便是将训练好的模型部署到实际的生产环境中,使 AI 真正运行起来,服务于日常生活。推理系统,是一个专门用于部署神经网络模型,执行推理预测任务的 AI 系统。...推理引擎,则是推理系统中的重要组成部分,它主要负责 AI 模型的加载与执行。...上面这两张图也是展示在移动终端上应用推理系统的实际案例,通过华为 HMS Core 实现的人脸检测和手势检测功能,为用户带来了新颖而富有互动性的体验。...这种手势控制的方式不仅使得游戏操作更加便捷,还为用户带来了更加丰富和多样的交互体验。这两张图所展示的应用案例充分展示了推理系统在移动终端上的强大功能和广泛应用前景。...通过利用华为 HMS Core 提供的 AI 能力,可以轻松地实现各种复杂的人脸和手势检测功能,并将其应用于各种实际场景中,为用户带来更加智能、便捷和富有创新性的体验。
本文将介绍 AI 模型网络参数方面的一些基本概念,以及硬件相关的性能指标,为后面让大家更了解模型轻量化做初步准备。
推理系统架构是 AI 领域中的一个关键组成部分,它负责将训练好的模型应用于实际问题,从而实现智能决策和自动化。...为了加快推理速度、减少计算资源的消耗,工程师们常常会使用模型压缩技术,如量化、剪枝和蒸馏。此外,硬件加速(如 GPU、TPU)和专用芯片(如 AI 加速器)也是提高推理效率的重要手段。...多框架支持:兼容 TensorFlow、PyTorch、ONNX 等主流 AI 框架。模型优化:集成 TensorRT 等优化工具,进一步提升模型推理性能。...安全性:支持安全传输和访问控制,保障推理服务的安全性。作为一个强大的推理框架,Triton 能够满足多样化的 AI 应用需求,帮助企业和开发者构建高效、可靠的推理服务。...利用 A/B 测试框架,对比新旧模型在相同条件下的表现差异,确保新模型不仅在理论上改进,而且在实践中也确实提升了用户体验或业务指标。
推理系统架构是 AI 领域中的一个关键组成部分,它负责将训练好的模型应用于实际问题,从而实现智能决策和自动化。...为了加快推理速度、减少计算资源的消耗,工程师们常常会使用模型压缩技术,如量化、剪枝和蒸馏。此外,硬件加速(如 GPU、TPU)和专用芯片(如 AI 加速器)也是提高推理效率的重要手段。...多框架支持:兼容 TensorFlow、PyTorch、ONNX 等主流 AI 框架。 模型优化:集成 TensorRT 等优化工具,进一步提升模型推理性能。...安全性:支持安全传输和访问控制,保障推理服务的安全性。 作为一个强大的推理框架,Triton 能够满足多样化的 AI 应用需求,帮助企业和开发者构建高效、可靠的推理服务。...利用 A/B 测试框架,对比新旧模型在相同条件下的表现差异,确保新模型不仅在理论上改进,而且在实践中也确实提升了用户体验或业务指标。
此时,AI 模型不再处于学习状态,而是作为服务的一部分,接受输入数据并输出预测结果。云端部署的推理系统更像传统 Web 服务,在边缘侧部署的模型更像手机应用和 IOT 应用系统。...移动设备:如智能手机、平板电脑、智能穿戴设备等,它们内置处理器、内存和操作系统,能够运行轻量级推理应用,实现基于 AI 的个性化服务、实时分析或设备自主决策。...云端部署推理系统的确具备诸多显著优点,使其成为众多企业和课程首选的部署方式。然而,云端部署并非万能解决方案,也伴随着一些特定的挑战。AI 的服务成本非常高昂。...综上所述,云侧推理和部署的全流程涵盖了模型全生命周期管理、服务接口设计、请求处理与调度、推理执行、系统监控以及硬件优化等多个环节,旨在构建一个高效、稳定、可扩展的云上 AI 服务环境。...移动端部署应用常常有以下场景:智能设备,智慧城市,智能工业互联网,智慧办公室等。
在深入探讨推理引擎的架构之前,让我们先来概述一下推理引擎的基本概念。推理引擎作为 AI 系统中的关键组件,负责将训练好的模型部署到实际应用中,执行推理任务,从而实现智能决策和自动化处理。...通用性 通用性作为推理引擎的核心特性之一,其设计目的旨在打破技术壁垒,实现无缝对接多样化需求,无论是在模型兼容性、网络结构支持、设备与操作系统适配性上,都展现了极高的灵活性与包容性,确保了 AI 技术在广阔的应用场景中畅通无阻...特定模块支持 推理引擎会对特定领域,如针对计算机视觉(CV)和自然语言处理(NLP)这两大核心 AI 领域,提供专门的模块与工具包,封装大量经过优化的算法与模型,使得开发者能够快速搭建起复杂的应用系统。...高性能 高性能是推理引擎的灵魂,它直接决定了 AI 应用的响应速度、资源消耗以及用户体验。...其他模块 性能对比与集成模块的便捷性成为衡量一个推理引擎优劣的关键指标,它们直接影响着开发者的选择和最终用户的体验。
从前文的简单介绍中,我们提到了可以从内存布局上对推理引擎的 Kernel 进行优化,接下来,我们将先介绍 CPU 和 GPU 的基础内存知识,NCHWX 内存排布格式以及详细展开描述 MNN 这个针对移动应用量身定制的通用高效推理引擎中通过数据内存重新排布进行的内核优化...NCHWX在推理引擎中,或者底层 Kernel 层实际上为了更加适配到 DSA 或者 ASIC 专用芯片会使用 NCHWX 内存排布格式,那么下面我们来详细了解一下 NCHWX 数据排布格式。...MNNMNN 是一个轻量级的深度学习端侧推理引擎,核心解决神经网络模型在端侧推理运行问题,涵盖神经网络模型的优化、转换和推理。
通过 AscendCL,开发者可以更加高效地进行 AI 应用的开发和优化,从而加速 AI 技术在各个领域的应用和落地。AscendCL 的易用性和高效性,使得它成为开发 AI 应用的重要工具之一。...每次调用 aclrtSetDevice 接口,系统会进行引用计数加 1;调用 aclrtResetdevice 接口,系统会进行引用计数减 1。...多线程的调度依赖于运行应用的操作系统调度,多 Stream 在 Device 侧的调度,由 Device 上调度组件进行调度。...具体计算:分为模型推理/单算子调用/媒体数据处理三部分。模型推理模型加载:模型推理前,需要先将对应的模型加载到系统中。注意加载模型前需要有适配昇腾 AI 处理器的离线模型。...算子调用如果 AI 应用中不仅仅包括模型推理,还有数学运算(例如 BLAS 基础线性代数运算)、数据类型转换等功能,也想使用昇腾的算力,直接通过 AscendCL 接口加载并执行单个算子,省去模型构建、
通过使用 Protobuf,ONNX 能够在不同的 AI 框架之间高效地传输模型数据。...CoreML既是一种文件格式,又是一个强大的机器学习运行时环境,它使用了 Protocol Buffers 的二进制序列化格式,并在所有苹果操作系统平台上提供了高效的推理和重新训练功能。...跨语言跨平台格式: 这类格式旨在实现不同编程语言和操作系统之间的互操作性。比如 ONNX 就是一种跨平台的模型序列化格式,可以在不同的 AI 框架和运行时环境之间共享模型。Ⅲ....目标文件格式在序列化与反序列化的过程中,选择合适的目标文件格式至关重要,它决定了数据的存储方式、传输效率和系统的整体性能。...很多 AI 推理框架都是用的 FlatBuffers,最主要的有以下两个:MNN: 阿里巴巴的神经网络推理引擎,是一个轻量级的神经网络引擎,支持深度学习的推理与训练。
Blackbox.AI在用户体验上也实现了质的飞跃。它提供了直观易用的界面和丰富的功能选项,使得用户无需具备专业的技术背景,也能轻松上手并享受AI带来的便捷。...接下来跟着博主一起来免费体验一下Blackbox.AI官网:https://www.blackbox.ai三、Blackbox.AI实战体验3.1 实时网页搜索功能Blackbox.AI的实时网页搜索功能使开发者能够即时获取最新的技术动态...:5、然后我们就可以在对话框使用文件夹中的文件了:3.3 免费使用高级模型Blackbox.AI网站左上角可以切换模型,目前支持:Blackbox.AI、Blackbox.AI-PRO、GPT-4o、Gemini-Pro...用户只需将设计图像上传,系统会分析界面布局并生成相应的代码,极大地简化了开发流程,这个功能对于前端开发者来说简直非常Nice啊!...尤为值得一提的是,Blackbox.AI还慷慨地提供了免费使用高级模型的机会,包括Gpt4o、Gemini Pro和Claude Sonnet等。
Ampere为基于Ampere Altra处理器的SR1实例提供了优化过的AI框架(Ampere AI),并通过腾讯镜像市场提供免费的镜像给客户使用。...用CPU做推理现下AI推理应用的算力来源主要有三种方式,即CPU+AI专用芯片,CPU+GPU和单纯的CPU推理。...根据Statista和麦肯锡之前发布的AI硬件洞察报告,基于CPU的推理目前仍占50%以上。相比其他两种模式,采用CPU推理的主要原因有几点:更加灵活便利,软件主导,对应用方来说对专用硬件的依赖性低。...涉及操作系统、驱动程序、运行时组件库等的复杂性较低。CPU 上 AI 模型算法(例如稀疏性、量化等)的持续优化创新可以提供接近 GPU 的高吞吐量 。更容易实现横向扩展并与其他软件堆栈进行集成 。...更重要的是在CPU上搭建推理应用可以方便的将AI集成到业务逻辑模块,融入微服务云原生体系。
MindIE 基本介绍MindIE(Mind Inference Engine,昇腾推理引擎)是华为昇腾针对 AI 全场景业务的推理加速套件。...通过分层开放 AI 能力,支撑用户多样化的 AI 业务需求,使能百模千态,释放昇腾硬件设备算力。支持多种主流 AI 框架,提供多层次编程接口,帮助用户快速构建基于昇腾平台的推理业务。...MindIE-RTMindIE-RT 是面向昇腾 AI 处理器的推理加速引擎,提供模型推理迁移相关开发接口及工具,能够将不同的 AI 框架(PyTorch、ONNX 等)上完成训练的算法模型统一为计算图表示...MindIE-RT(Mind Inference Engine RT,昇腾推理引擎运行时)是针对昇腾 AI 处理器的推理加速引擎,提供 AI 模型推理场景下的商业化部署能力,能够将不同的 AI 框架上完成训练的算法模型统一为计算图表示...应用场景MindIE-RT 是基于昇腾 AI 处理器的部署推理引擎,适用于通过 NPU、GPU、CPU 等设备训练的算法模型,为其提供极简易用且灵活的接口,实现算法从训练到推理的快速迁移。
领取专属 10元无门槛券
手把手带您无忧上云