首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

Python 中的 pandas 快速上手之:概念初识

有了 Pandas ,我们不用手动一行一行地读取数据,也不用手动将数据装进 Python 可以使用的数据结构中。Pandas 可以自动帮我们完成这些重复的工作,节省了大量时间和精力。...你需要根据给定的一个目标时间,从这 10万 行数据里找到最接近这个目标时间的那一行,并返回对应的 gas_pedal 值。听起来是不是有点麻烦?...如果只用Python内置的库,你得自己先把整个 csv 文件读进内存,然后一行行遍历所有数据,计算每个时间戳与目标时间的差值,使用二分查找定位找到需要的值, 找出差值最小的那一行。...参数: target (int/float): 目标数字 csv_file (str): CSV文件路径 返回: tuple: 最接近的数字和对应的值...然后利用 Pandas 强大的运算能力,几行代码就能算出每个时间戳与目标时间的差值,再找出最小差值对应的那一行数据,返回所需的timetamp 和 gas_pedal。

14410

通宵翻译Pandas官方文档,写了这份Excel万字肝货操作!

索引值也是持久的,所以如果你对 DataFrame 中的行重新排序,特定行的标签不会改变。 5. 副本与就地操作 大多数 Pandas 操作返回 Series/DataFrame 的副本。...If/then逻辑 假设我们想要根据 total_bill 是小于还是大于 10 美元,来创建一个具有低值和高值的列。 在Excel电子表格中,可以使用条件公式进行逻辑比较。...日期功能 本节将提到“日期”,但时间戳的处理方式类似。 我们可以将日期功能分为两部分:解析和输出。在Excel电子表格中,日期值通常会自动解析,但如果您需要,还有一个 DATEVALUE 函数。...在 Pandas 中,您需要在从 CSV 读取时或在 DataFrame 中读取一次时,将纯文本显式转换为日期时间对象。 解析后,Excel电子表格以默认格式显示日期,但格式可以更改。...在 Pandas 中,您通常希望在使用日期进行计算时将日期保留为日期时间对象。输出部分日期(例如年份)是通过电子表格中的日期函数和 Pandas 中的日期时间属性完成的。

19.6K20
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    Pandas入门2

    标题中的英文首字母大写比较规范,但在python实际使用中均为小写。...简单说明原因,并修改原始dataframe中的数据使得Mjob和Fjob列变为首字母大写 函数操作不影响原数据,返回值的新数据要赋值给原数据,如下面代码所示: df[['Mjob','Fjob']] =...image.png 7.2 日期时间类与字符串相互转换 使用datetime模块中的datatime对象的strftime方法将时间转换为字符串,需要1个参数,参数为字符串格式。...方法的返回值的数据类型是字符串。 另外,其实time模块中有strftime方法,需要1个参数,参数为字符串格式。可以将现在的时间转换为字符串。 ?...image.png 7.3 Pandas中的时间序列 pandas通常是用于处理成组日期的,不管这个日期是DataFrame的轴索引还是列。to_datetime方法可以解析多种不同的日期表示形式。

    4.2K20

    Pandas 学习手册中文第二版:11~15

    转换的一般过程 GroupBy对象的.transform()方法将一个函数应用于数据帧中的每个值,并返回另一个具有以下特征的DataFrame: 它的索引与所有组中索引的连接相同 行数等于所有组中的行数之和...PeriodIndex索引可用于将数据与特定时间间隔相关联,并且能够对每个间隔中的事件进行切片和执行分析。...所得的计算结果将劳动节(不是工作日)考虑在内,并返回了正确的2014-09-02日期。...在本章中,我们研究了多种方法来表示在特定时间点发生的事件,以及如何对这些值随时间变化进行建模。...通常,将一只股票的波动率与另一只股票的波动率进行比较,以获得可能风险较小的感觉,或者将一个市场指数与股票的波动率与整个市场进行比较,这是很常见的。 通常,波动性越高,对该股票进行投资的风险就越大。

    3.4K20

    Pandas库常用方法、函数集合

    Pandas是Python数据分析处理的核心第三方库,它使用二维数组形式,类似Excel表格,并封装了很多实用的函数方法,让你可以轻松地对数据集进行各种操作。...:合并多个dataframe,类似sql中的union pivot:按照指定的行列重塑表格 pivot_table:数据透视表,类似excel中的透视表 cut:将一组数据分割成离散的区间,适合将数值进行分类...:对每个分组应用自定义的聚合函数 transform:对每个分组应用转换函数,返回与原始数据形状相同的结果 rank:计算元素在每个分组中的排名 filter:根据分组的某些属性筛选数据 sum:计算分组的总和...:绘制散点矩阵图 pandas.plotting.table:绘制表格形式可视化图 日期时间 to_datetime: 将输入转换为Datetime类型 date_range: 生成日期范围 to_timedelta...: 用于展开窗口的操作 at_time, between_time: 在特定时间进行选择 truncate: 截断时间序列

    31510

    Pandas库

    通过这些基础知识和资源,你可以逐步深入学习Pandas,从而在数据分析领域游刃有余。 Pandas库中Series和DataFrame的性能比较是什么?...在Pandas库中,Series和DataFrame是两种主要的数据结构,它们各自适用于不同的数据操作任务。我们可以对这两种数据结构的性能进行比较。...以下是一些主要的高级技巧: 重采样(Resampling) : 重采样是时间序列数据处理中的一个核心功能,它允许你按照不同的频率对数据进行重新采样。例如,可以将日数据转换为月度或年度数据。...Pandas提供了强大的日期时间处理功能,可以方便地从日期列中提取这些特征。...例如,可以根据特定条件筛选出满足某些条件的数据段,并对这些数据段应用自定义函数进行处理。

    8410

    Pandas 的Merge函数详解

    pd.merge(customer, order) 默认情况下,merge函数是这样工作的: 将按列合并,并尝试从两个数据集中找到公共列,使用来自两个DataFrame(内连接)的列值之间的交集。...pd.merge_ordered(customer, order) 默认情况下,merge_ordered将执行Outer Join并根据连接键对数据进行排序。...,并且用于对数据进行分组的同一DataFrame中不存在的数据用NaN填充。...这个函数用于处理时间序列数据或其他有序数据,并且可以根据指定的列或索引按照最接近的值进行合并。...默认情况下它查找最接近匹配的已排序的键。在上面的代码中,与delivery_date不完全匹配的order_date试图在delivery_date列中找到与order_date值较小或相等的键。

    32330

    pandas时间序列常用方法简介

    需要指出,时间序列在pandas.dataframe数据结构中,当该时间序列是索引时,则可直接调用相应的属性;若该时间序列是dataframe中的一列时,则需先调用dt属性再调用接口。...3.分别访问索引序列中的时间和B列中的日期,并输出字符串格式 ? 03 筛选 处理时间序列的另一个常用需求是筛选指定范围的数据,例如选取特定时段、特定日期等。...当然,虽然同样是执行的模糊匹配,但对于时间序列和字符串序列的匹配策略还是略有不同:时间序列执行的模糊匹配是"截断式",即只要当前匹配,则进行筛选保留;而字符串序列执行的模糊匹配是"比较式",也就是说在执行范围查询时实际上是将各索引逐一与查询范围进行比较字符串大小...2.truncate截断函数,实际上这也不是一个时间序列的专用方法,而仅仅是pandas中布尔索引的一种简略写法:通过逐一将索引与起始值比较得出布尔值,从而完成筛选。...05 滑动窗口 理解pandas中时间序列滑动窗口的最好方式是类比SQL中的窗口函数。实际上,其与分组聚合函数的联系和SQL中的窗口函数与分组聚合联系是一致的。

    5.8K10

    Python 算法交易秘籍(一)

    以下是本章的食谱列表: 创建日期时间对象 创建时间差对象 对日期时间对象进行操作 修改日期时间对象 将日期时间转换为字符串 从字符串创建日期时间对象 日期时间对象和时区...创建日期时间对象 datetime模块提供了一个datetime类,它可以用于准确捕获与时间戳、日期、时间和时区相关的信息。在本食谱中,您将以多种方式创建datetime对象,并检查其属性。...您的输出可能会有所不同: 2020-08-12 20:55:48.366130+05:30 使用strftime()将now转换为具有特定日期时间格式的字符串并打印出来: >>> print(now.strftime...iterrows()方法将每行作为一个(index, pandas.Series)对进行迭代。在步骤 6中,您使用df.iloc[0]迭代df的第一行的所有值。...在尝试了此配方后,通过登录经纪人的网站,您可以在您的经纪账户中找到已下达的订单。您可以将订单 ID 与本配方中显示的最后一个代码片段中返回的订单 ID 进行匹配。

    79450

    【精心解读】用pandas处理大数据——节省90%内存消耗的小贴士

    余下的大部分优化将针对object类型进行。 在这之前,我们先来研究下与数值型相比,pandas如何存储字符串。...你可以看到这些字符串的大小在pandas的series中与在Python的单独字符串中是一样的。...将其转换为datetime的意义在于它可以便于我们进行时间序列分析。 转换使用pandas.to_datetime()函数,并使用format参数告之日期数据存储为YYYY-MM-DD格式。...dtype参数接受一个以列名(string型)为键字典、以Numpy类型对象为值的字典。 首先,我们将每一列的目标类型存储在以列名为键的字典中,开始前先删除日期列,因为它需要分开单独处理。...总结 我们学习了pandas如何存储不同的数据类型,并利用学到的知识将我们的pandas dataframe的内存用量降低了近90%,仅仅只用了一点简单的技巧: 将数值型列降级到更高效的类型 将字符串列转换为类别类型

    8.7K50

    Pandas DateTime 超强总结

    基本上是为分析金融时间序列数据而开发的,并为处理时间、日期和时间序列数据提供了一整套全面的框架 今天我们来讨论在 Pandas 中处理日期和时间的多个方面,具体包含如下内容: Timestamp 和...pandas to_datetime() 方法将存储在 DataFrame 列中的日期/时间值转换为 DateTime 对象。将日期/时间值作为 DateTime 对象使操作它们变得更加容易。...DataFrame 行,我们可以创建一个布尔掩码并使用 .loc 方法过滤特定日期范围内的行: mask = (df.datetime >= pd.Timestamp('2019-03-06')) &...例如,将 5B 作为日期偏移量传递给该方法会返回前五个工作日内具有索引的所有行。同样,将 1W 传递给 last() 方法会返回上周内所有带有索引的 DataFrame 行。...虽然我们可以使用 resample() 方法进行上采样和下采样,但我们将重点介绍如何使用它来执行下采样,这会降低时间序列数据的频率——例如,将每小时的时间序列数据转换为每日或 每日时间序列数据到每月 以下示例返回服务器

    5.6K20

    数据分析利器--Pandas

    这样为了保存一个简单的[1,2,3],需要有3个指针和三个整数对象。对于数值运算来说这种结构显然比较浪费内存和CPU计算时间。...(参考:Series与DataFrame) NaN/None: python原生的None和pandas, numpy中的numpy.NaN尽管在功能上都是用来标示空缺数据。...(参考:NaN 和None 的详细比较) 3、pandas详解 3.1 简介: pandas是一个Python语言的软件包,在我们使用Python语言进行机器学习编程的时候,这是一个非常常用的基础编程库...(): 将无效值替换成为有效值 具体用法参照:处理无效值 4、Pandas常用函数 函数 用法 DataFrame.duplicated() DataFrame的duplicated方法返回一个布尔型...DataFrame.drop_duplicates() 它用于返回一个移除了重复行的DataFrame DataFrame.fillna() 将无效值替换成为有效值 5、Pandas常用知识点 5.1

    3.7K30

    panda python_12个很棒的Pandas和NumPy函数,让分析事半功倍

    这使NumPy能够无缝且高速地与各种数据库进行集成。  1. allclose()  Allclose() 用于匹配两个数组并且以布尔值形式输出。如果两个数组的项在公差范围内不相等,则返回False。...它返回在特定条件下值的索引位置。这差不多类似于在SQL中使用的where语句。请看以下示例中的演示。  ...,或者用户可以直接忽略标签,并让Series,DataFrame等自动对齐数据  强大灵活的分组功能,可对数据集执行拆分-应用-合并操作,以汇总和转换数据  轻松将其他Python和NumPy数据结构中的不规则的...,用于从平面文件(CSV和定界文件)、 Excel文件,数据库加载数据,以及以超高速HDF5格式保存/加载数据  特定于时间序列的功能:日期范围生成和频率转换、移动窗口统计、日期移位和滞后。  ...将数据帧分配给另一个数据帧时,在另一个数据帧中进行更改,其值也会进行同步更改。为了避免出现上述问题,可以使用copy()函数。

    5.1K00

    10快速入门Query函数使用的Pandas的查询示例

    在开始之前,先快速回顾一下pandas -中的查询函数query。查询函数用于根据指定的表达式提取记录,并返回一个新的DataFrame。表达式是用字符串形式表示的条件或条件的组合。...pandas query()函数可以灵活地根据一个或多个条件提取子集,这些条件被写成表达式并且不需要考虑括号的嵌套 在后端pandas使用eval()函数对该表达式进行解析和求值,并返回表达式被求值为TRUE...将文本值包装在单个引号“”中,就可以了 示例5 想获得即状态“未发货”所有记录,可以在query()表达式中写成如下的形式: df.query("Status == 'Not Shipped'") 它返回所有记录...但是,query()的还不仅限于这些数据类型,对于日期时间值 Query()函数也可以非常灵活的过滤。...日期时间列过滤 使用Query()函数在日期时间值上进行查询的唯一要求是,包含这些值的列应为数据类型dateTime64 [ns] 在示例数据中,OrderDate列是日期时间,但是我们的df其解析为字符串

    4.5K10

    10个快速入门Query函数使用的Pandas的查询示例

    在开始之前,先快速回顾一下pandas -中的查询函数query。查询函数用于根据指定的表达式提取记录,并返回一个新的DataFrame。表达式是用字符串形式表示的条件或条件的组合。...在后端pandas使用eval()函数对该表达式进行解析和求值,并返回表达式被求值为TRUE的数据子集或记录。所以要过滤pandas DataFrame,需要做的就是在查询函数中指定条件即可。...使用单一条件进行过滤 在单个条件下进行过滤时,在Query()函数中表达式仅包含一个条件。返回的输出将包含该表达式评估为真的所有行。...那么如何在另一个字符串中写一个字符串?将文本值包装在单个引号“”中,就可以了。...日期时间列过滤 使用Query()函数在日期时间值上进行查询的唯一要求是,包含这些值的列应为数据类型dateTime64 [ns] 在示例数据中,OrderDate列是日期时间,但是我们的df其解析为字符串

    4.4K20

    一个真实问题,搞定三个冷门pandas函数

    首先需要构造这样的数据,在Python中我们可以先按照规则生成字符串,然后使用time或datatime模块进行转换,方法很多,但是pandas中如何直接生成呢?...也可以通过开始日期与长度生成 上面的默认间隔是1天,当然是可以自定义,比如修改为5天 该方法还支持生成更多的指定形式的时间序列数据,感兴趣的读者可以自行查阅官方文档,现在我们就可以生成示例数据?...pandas.Series.ne ne函数可以比较两个Series,常用于缺失值填充,下面是一个例子 除了可以比较两个Series之外,对于我们的问题,它可以比较元素:返回True如果这个值不是你指定的值...pandas.DataFrame.idxmax 如何在pandas中直接定位一组数据中最大/最小值的位置?...刚好可以满足我们的要求,现在就可以将idxmax与之前的ne函数结合起来实现我们需求 df['value'].ne('').idxmax() # 5 返回的索引值是5,最后就可以使用loc函数一行代码实现我们的需求

    67910

    3 个不常见但非常实用的Pandas 使用技巧

    在本文中,将演示一些不常见,但是却非常有用的 Pandas 函数。 创建一个示例 DataFrame 。...1、To_period 在 Pandas 中,操 to_period 函数允许将日期转换为特定的时间间隔。使用该方法可以获取具有许多不同间隔或周期的日期,例如日、周、月、季度等。...比如针对于时间类型的列,month 方法只返回在许多情况下没有用处的月份的数值,我们无法区分 2020 年 12 月和 2021 年 12 月。...但是它只是全部的总和没有考虑分类。在某些情况下,我们可能需要分别计算不同类别的累积和。 Pandas中我们只需要按类列对行进行分组,然后应用 cumsum 函数。...例如在我们的 DataFrame 中,”分类“列具有 4 个不同值的分类变量:A、B、C、D。 默认情况下,该列的数据类型为object。

    1.8K30

    一个真实问题,搞定三个冷门pandas函数

    首先需要构造这样的数据,在Python中我们可以先按照规则生成字符串,然后使用time或datatime模块进行转换,方法很多,但是pandas中如何直接生成呢?...也可以通过开始日期与长度生成 上面的默认间隔是1天,当然是可以自定义,比如修改为5天 该方法还支持生成更多的指定形式的时间序列数据,感兴趣的读者可以自行查阅官方文档,现在我们就可以生成示例数据?...pandas.Series.ne ne函数可以比较两个Series,常用于缺失值填充,下面是一个例子 除了可以比较两个Series之外,对于我们的问题,它可以比较元素:返回True如果这个值不是你指定的值...pandas.DataFrame.idxmax 如何在pandas中直接定位一组数据中最大/最小值的位置?...刚好可以满足我们的要求,现在就可以将idxmax与之前的ne函数结合起来实现我们需求 df['value'].ne('').idxmax() # 5 返回的索引值是5,最后就可以使用loc函数一行代码实现我们的需求

    76720

    整理了10个经典的Pandas数据查询案例

    在开始之前,先快速回顾一下Pandas中的查询函数query。查询函数用于根据指定的表达式提取记录,并返回一个新的DataFrame。表达式是用字符串形式表示的条件或条件的组合。...在后端Pandas使用eval()函数对该表达式进行解析和求值,并返回表达式被求值为TRUE的数据子集或记录。所以要过滤Pandas中的DataFrame,需要做的就是在查询函数中指定条件即可。...使用单一条件进行过滤 在单个条件下进行过滤时,在Query()函数中表达式仅包含一个条件。返回的输出将包含该表达式评估为真的所有行。...但是,query()的还不仅限于这些数据类型,对于日期时间值query()函数也可以非常灵活的过滤。...日期时间列过滤 使用query()函数在日期时间值上进行查询的唯一要求是,包含这些值的列应为数据类型dateTime64 [ns] 在示例数据中,OrderDate列是日期时间,但是我们的df其解析为字符串

    24120

    3 个不常见但非常实用的Pandas 使用技巧

    To_period 在 Pandas 中,操作 to_period 函数允许将日期转换为特定的时间间隔。使用该方法可以获取具有许多不同间隔或周期的日期,例如日、周、月、季度等。...比如针对于时间类型的列,month 方法只返回在许多情况下没有用处的月份的数值,我们无法区分 2020 年 12 月和 2021 年 12 月。...中不同的年月和季度值。...但是它只是全部的总和没有考虑分类。在某些情况下,我们可能需要分别计算不同类别的累积和。 Pandas中我们只需要按类列对行进行分组,然后应用 cumsum 函数。...例如在我们的 DataFrame 中,”分类“列具有 4 个不同值的分类变量:A、B、C、D。 默认情况下,该列的数据类型为object。

    1.3K10
    领券