在本章中,您将学习如何从数据帧中选择一个数据列,该数据列将作为序列返回。 使用此一维对象可以轻松显示不同的方法和运算符如何工作。 许多序列方法返回另一个序列作为输出。...在视觉上,Pandas 数据帧的输出显示(在 Jupyter 笔记本中)似乎只不过是由行和列组成的普通数据表。 隐藏在表面下方的是三个组成部分-您必须具备的索引,列和数据(也称为值)。...当像上一步那样将数字列彼此相加时,pandas 将缺失值默认为零。 但是,如果缺少特定行的所有值,则 Pandas 也会将总数也保留为丢失。...所得的序列本身也具有sum方法,该方法可以使我们在数据帧中获得总计的缺失值。 在步骤 4 中,数据帧的any方法返回布尔值序列,指示每个列是否存在至少一个True。....jpeg)] 请注意,前面的数据帧中的第三,第四和第五行中的所有值是如何丢失的。
实际上,这是许多用户更喜欢 Excel 而不是 CSV 的主要原因之一。 幸运的是,Pandas 支持从多张纸中读取数据。...set_index方法仅在内存中全新的数据帧中创建了更改,我们可以将其保存在新的数据帧中。...我们将看到如何删除所有或大量记录丢失数据的行或列。 我们还将学习如何(而不是删除数据)如何用零或剩余值的平均值填充丢失的记录。...在 Pandas 数据帧中建立索引 在本节中,我们将探讨如何设置索引并将其用于 Pandas 中的数据分析。 我们将学习如何在读取数据后以及读取数据时在DataFrame上设置索引。...在本节中,我们探讨了如何设置索引并将其用于 Pandas 中的数据分析。 我们还学习了在读取数据后如何在数据帧上设置索引。 我们还看到了如何在从 CSV 文件读取数据时设置索引。
df.head()将显示数据帧的前5行,使用此函数可以快速浏览数据集。 删除未使用的列 根据我们的样本,有一个无效/空的Unnamed:13列我们不需要。我们可以使用下面的函数删除它。...inplace=True将直接对数据帧本身执行操作,默认情况下,它将创建另一个副本,你必须再次将其分配给数据帧,如df = df.drop(columns="Unnamed: 13")。...如果我们在读取数据时发现了这个问题,我们实际上可以通过将缺失值传递给na_values参数来处理这个缺失值。结果是一样的。 现在我们已经用空值替换了它们,我们将如何处理那些缺失值呢?...解决方案1:删除样本(行)/特征(列) 如果我们确信丢失的数据是无用的,或者丢失的数据只是数据的一小部分,那么我们可以删除包含丢失值的行。 在统计学中,这种方法称为删除,它是一种处理缺失数据的方法。...在该方法中,如果缺少任何单个值,则整个记录将从分析中排除。 如果我们确信这个特征(列)不能提供有用的信息或者缺少值的百分比很高,我们可以删除整个列。
Pandas 包含一个名为melt的数据帧方法,该的工作原理与先前秘籍中介绍的stack方法相似,但灵活性更高。...没有返回的数据帧的单独副本。 在接下来的几个步骤中,我们将研究append方法,该方法不会修改调用数据帧的方法。 而是返回带有附加行的数据帧的新副本。...HTML 表通常不会直接转换为漂亮的数据帧。 通常缺少列名,多余的行和未对齐的数据。 在此秘籍中,skiprows传递了行号列表,以便在读取文件时跳过。 它们对应于步骤 8 的数据帧输出中缺少值的行。...并非将ffill方法应用于整个数据帧,我们仅将其应用于President列。 在 Trump 的数据帧中,其他列没有丢失数据,但这不能保证所有抓取的表在其他列中都不会丢失数据。...在数据帧的当前结构中,它无法基于单个列中的值绘制不同的组。 但是,第 23 步显示了如何设置数据帧,以便 Pandas 可以直接绘制每个总统的数据,而不会像这样循环。
在本教程中,我们将说明三个示例,使用相同的方法从 csv 文件中删除行。在本教程结束时,您将熟悉该概念,并能够从任何 csv 文件中删除该行。 语法 这是从数组中删除多行的语法。...最后,我们使用 to_csv() 将更新的数据帧写回 CSV 文件,设置 index=False 以避免将行索引写入文件。...然后,我们使用索引参数指定要删除的标签。最后,我们使用 to_csv() 将更新的数据帧写回 CSV 文件,而不设置 index=False,因为行标签现在是 CSV 文件的一部分。...为此,我们首先使用布尔索引来选择满足条件的行。最后,我们使用 to_csv() 将更新的数据帧写回 CSV 文件,再次设置 index=False。...('example_3.csv', index=False) 输出 运行代码前的 CSV 文件 − 运行代码后的 CSV 文件 − 结论 我们了解到 pandas 是一个强大而灵活的 Python
下面的代码显示了必要的 import 语句: ? 使用 Pandas 库,你可以将数据文件加载到容器对象(称为数据帧, dataframe)中。...顾名思义,这种类型的容器是一个框架,它使用 Pandas 方法 pd.read_csv() 读入的数据,该方法是特定于 CSV 文件的。...将每个 CSV 文件转换为 Pandas 数据帧对象如下图所示: ? 检查数据 & 清理脏数据 在进行探索性分析时,了解您所研究的数据是很重要的。幸运的是,数据帧对象有许多有用的属性,这使得这很容易。...让我们看看是否有数据丢失,并查看所有数据的数据类型: ? 使用 .isnull().sum() 检查丢失的数据 ? 用 .dtypes 检查数据类型 好消息是数据中不存在不存在的值。...好的做法是保持要比较的数值数据类型的一致性,因此将 “Total” 转换为 float 类型也是可以接受的,而不会损害数据的完整性(integer = 1166, float = 1166.0)。
当将数据作为浮点数传递到生成模型中时,我们可能会得到小数的输出值,例如 2.5——除非你是一个有 2 个孩子、一个新生儿和奇怪的幽默感的数学家,否则有 2.5 个孩子是不行的。...这意味着在启用写入时复制时,某些方法将返回视图而不是副本,这通过最大限度地减少不必要的数据重复来提高内存效率。 这也意味着在使用链式分配时需要格外小心。...- Stack Overflow),因此永远不会更改原始数据帧。...df.head() # <---- df does not change 启用写入时复制:在链接分配中不会更改原始数据帧。作者代码段。...在新版本中,用户可以休息以确保如果他们使用 pandas 2.0,他们的管道不会中断,这是一个主要优势!但除此之外呢?
在使用Python进行数据分析时,Jupyter Notebook是一个非常强力的工具,在数据集不是很大的情况下,我们可以使用pandas轻松对txt或csv等纯文本格式数据进行读写。...size_mb:带有序列化数据帧的文件的大小 save_time:将数据帧保存到磁盘所需的时间 load_time:将先前转储的数据帧加载到内存所需的时间 save_ram_delta_mb:在数据帧保存过程中最大的内存消耗增长...将五个随机生成的具有百万个观测值的数据集转储到CSV中,然后读回内存以获取平均指标。并且针对具有相同行数的20个随机生成的数据集测试了每种二进制格式。...这里有趣的发现是hdf的加载速度比csv更低,而其他二进制格式的性能明显更好,而feather和parquet则表现的非常好 ? 保存数据并从磁盘读取数据时的内存消耗如何?...可以看到feather和pickle拥有最快的I/O速度,接下来该比较数据加载过程中的内存消耗了。下面的条形图显示了我们之前提到的有关parquet格式的情况 ? 为什么parquet内存消耗这么高?
四、将CSV导入pandas 原始数据位于CSV文件中,我们需要通过pandas DataFrame将其加载到内存中。 REPL准备执行代码,但是我们首先需要导入pandas库,以便可以使用它。...从原始数据帧创建新的数据帧 我们可以使用pandas函数将单个国家/地区的所有数据行匹配countriesAndTerritories到与所选国家/地区匹配的列。...将DataFrame保存到SQLite 我们将使用SQLAlchemy创建与新SQLite数据库的连接,在此示例中,该数据库将存储在名为的文件中save_pandas.db。...请注意,在这种情况下,如果表已经存在于数据库中,我们将失败。您可以在该程序的更强大的版本中更改if_exists为replace 或append添加自己的异常处理。...我们只是将数据从CSV导入到pandas DataFrame中,选择了该数据的一个子集,然后将其保存到关系数据库中。
使用zip函数合并名称和出生数据集。 ? 我们基本上完成了创建数据集。我们现在将使用pandas库将此数据集导出到csv文件中。 df将是一个 DataFrame对象。...我们可以将文件命名为births1880.txt。函数to_csv将用于导出。除非另有说明,否则文件将保存在运行环境下的相同位置。 ?...获取数据 要读取文本文件,我们将使用pandas函数read_csv。 ? 这就把我们带到了练习的第一个问题。该read_csv功能处理的第一条记录在文本文件中的头名。...您可以将数字[0,1,2,3,4,...]视为Excel文件中的行号。在pandas中,这些是dataframe索引的一部分。您可以将索引视为sql表的主键,但允许索引具有重复项。...我们已经知道有1,000条记录而且没有任何记录丢失(非空值)。可以验证“名称”列仍然只有五个唯一的名称。 可以使用数据帧的unique属性来查找“Names”列的所有唯一记录。 ?
我们基本上完成了数据集的创建。现在将使用pandas库将此数据集导出到csv文件中。 df将是一个 DataFrame对象。...可以将文件命名为births1880.csv。函数to_csv将用于导出文件。除非另有指明,否则文件将保存在运行环境下的相同位置。 df.to_csv? 我们将使用的唯一参数是索引和标头。...在pandas中,这些是dataframe索引的一部分。您可以将索引视为sql表的主键,但允许索引具有重复项。...此时的名称列无关紧要,因为它很可能只是由字母数字字符串(婴儿名称)组成。本专栏中可能存在不良数据,但在此分析时我们不会担心这一点。在出生栏应该只包含代表出生在一个特定年份具有特定名称的婴儿数目的整数。...与该表一起,最终用户清楚地了解Mel是数据集中最受欢迎的婴儿名称。plot()是一个方便的属性,pandas可以让您轻松地在数据框中绘制数据。我们学习了如何在上一节中找到Births列的最大值。
数据读取 这里使用的数据集是来自 Kaggle 竞赛中的 Lending Club Loan Data 数据集, 该数据集包含2007-2015期间所有贷款人完整的贷款数据,即当前贷款状态 (当前,延迟...包的性能明显优于 Pandas,Pandas 需要一分多钟时间来读取这些数据,而 datatable 只需要二十多秒。...帧转换 (Frame Conversion) 对于当前存在的帧,可以将其转换为一个 Numpy 或 Pandas dataframe 的形式,如下所示: numpy_df = datatable_df.to_numpy...() pandas_df = datatable_df.to_pandas() 下面,将 datatable 读取的数据帧转换为 Pandas dataframe 形式,并比较所需的时间,如下所示: %...datatable_df[dt.f.loan_amnt>dt.f.funded_amnt,"loan_amnt"] ▌保存帧 在 datatable 中,同样可以通过将帧的内容写入一个 csv 文件来保存
通过本文的介绍,你将学习到如何在大型数据集中使用 datatable 包进行数据处理,特别在数据量特别大的时候你可以发现它可能比 Pandas 更加强大。...数据读取 这里使用的数据集是来自 Kaggle 竞赛中的 Lending Club Loan Data 数据集, 该数据集包含2007-2015期间所有贷款人完整的贷款数据,即当前贷款状态 (当前,延迟...帧转换 (Frame Conversion) 对于当前存在的帧,可以将其转换为一个 Numpy 或 Pandas dataframe 的形式,如下所示: numpy_df = datatable_df.to_numpy...() pandas_df = datatable_df.to_pandas() 下面,将 datatable 读取的数据帧转换为 Pandas dataframe 形式,并比较所需的时间,如下所示: %...datatable_df[dt.f.loan_amnt>dt.f.funded_amnt,"loan_amnt"] ▌保存帧 在 datatable 中,同样可以通过将帧的内容写入一个 csv 文件来保存
但是处理规模大小不同的数据使,用户还得求助于不同的工具,实在有点麻烦。而 Modin 能够将 pandas 的运行速度提高好几倍,而无需切换 API 来适应不同的数据规模。 ?...Modin 提供了一个优化 Pandas 的解决方案,这样数据科学家就可以把时间花在从数据中提取价值上,而不是花在提取数据的工具上。 Modin ?...Modin 如何加速数据处理过程 在笔记本上 在具有 4 个 CPU 内核的现代笔记本上处理适用于该机器的数据帧时,Pandas 仅仅使用了 1 个 CPU 内核,而 Modin 则能够使用全部 4 个内核...通常,Modin 使用「read_csv」函数读取 2G 数据需要 2 秒,而 读取 18G 数据大约需要不到 18 秒。 架构 接下来,本文将解析 Modin 的架构。...当使用默认的 Pandas API 时,你将看到一个警告: dot_df = df.dot(df.T) ? 当计算完成后,该操作会返回一个分布式的 Modin 数据帧。
数据读取 这里使用的数据集是来自 Kaggle 竞赛中的 Lending Club Loan Data 数据集, 该数据集包含2007-2015期间所有贷款人完整的贷款数据,即当前贷款状态 (当前,延迟...帧转换 (Frame Conversion) 对于当前存在的帧,可以将其转换为一个 Numpy 或 Pandas dataframe 的形式,如下所示: numpy_df = datatable_df.to_numpy...() pandas_df = datatable_df.to_pandas() 下面,将 datatable 读取的数据帧转换为 Pandas dataframe 形式,并比较所需的时间,如下所示:...帧的基础属性 下面来介绍 datatable 中 frame 的一些基础属性,这与 Pandas 中 dataframe 的一些功能类似。...datatable_df[dt.f.loan_amnt>dt.f.funded_amnt,"loan_amnt"] ▌保存帧 在 datatable 中,同样可以通过将帧的内容写入一个 csv 文件来保存
这一节我们将学习如何使用Python和Pandas中的逗号分隔(CSV)文件。 我们将概述如何使用Pandas将CSV加载到dataframe以及如何将dataframe写入CSV。...在第一部分中,我们将通过示例介绍如何读取CSV文件,如何从CSV读取特定列,如何读取多个CSV文件以及将它们组合到一个数据帧,以及最后如何转换数据 根据特定的数据类型(例如,使用Pandas read_csv...Pandas从文件导入CSV 在这个Pandas读取CSV教程的第一个例子中,我们将使用read_csv将CSV加载到与脚本位于同一目录中的数据帧。...在我们的例子中,我们将使用整数0,我们将获得更好的数据帧: df = pd.read_csv(url_csv, index_col=0) df.head() ?...image.png index_col参数也可以以字符串作为输入,现在我们将使用不同的数据文件。 在下一个示例中,我们将CSV读入Pandas数据帧并使用idNum列作为索引。
但是,如果因为不使用深度学习而感到被淘汰,那段日子已经过去了:有了RAPIDS库套件,现在可以完全在GPU上运行数据科学和分析管道。...TensorFlow和Pytorch是已经利用GPU的库的示例。现在,借助RAPIDS库套件,还可以操纵数据帧并在GPU上运行机器学习算法。...cuDF:数据帧操作 cuDF提供了类似Pandas的API,用于数据帧操作,因此,如果知道如何使用Pandas,那么已经知道如何使用cuDF。..., 0.2, None, 0.3]}) gdf = cudf.DataFrame.from_pandas(df) 也可以做相反的事情,将cuDF数据帧转换为pandas数据帧: import cudf...拥有一台可以改善这一点的PC和工具确实可以加快工作,并帮助更快地在数据中发现有趣的模式。想象得到一个40 GB的csv文件,然后只需将其加载到内存中即可查看其内容。
如果丢失的数据是由数据帧中的非NaN表示的,那么应该使用np.NaN将其转换为NaN,如下所示。...将pandas导入为 pd import pandas as pd import missingno as msno df = pd.read_csv('xeek_train_subset.csv')...这提供了并非所有值都存在的初始指示。 我们可以进一步使用.info()方法。这将返回数据帧的摘要以及非空值的计数。 从上面的例子中我们可以看出,我们对数据的状态和数据丢失的程度有了更简明的总结。...条形图 条形图提供了一个简单的绘图,其中每个条形图表示数据帧中的一列。条形图的高度表示该列的完整程度,即存在多少个非空值。...如果在零级将多个列组合在一起,则其中一列中是否存在空值与其他列中是否存在空值直接相关。树中的列越分离,列之间关联null值的可能性就越小。
了解更多信息并从Dara Market下载该数据集。 下载数据集并将其放在当前工作目录中,文件命名为“ daily-minimum-temperatures.csv ”。...', header=0) series.plot() pyplot.show() 运行该示例将数据集加载为Pandas Series,并创建一个时间序列的线图。...运行该示例将创建一个二维图,显示沿x轴的滞后值以及在-1和1之间的y轴上的相关性。...默认情况下,会被设置为95%的置信区间,表明这个代码之外的相关值很可能是一次相关而不是一个统计上的偶然事件。 ?...我们可以将x轴上的滞后数量限制为50,以使图更容易阅读。 ?
领取专属 10元无门槛券
手把手带您无忧上云