首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

考点:自定义函数、引用传值、二位列表的输入输出【Python习题02】

考点: 自定义函数、引用传值、二位列表的输入输出 题目: 题目: 编写input()和output()函数输入, 输出N个学生的数据记录。...分析思路: 根据考点,自己定义两个函数分别用于数据的输入和输出。我们可以自己定义指定个学生信息的输入。 1.自己定义一个全局变量列表类型students。...2.录入数据时将这个定义的变量students传入到函数内部,然后再输入函数中进行数据的录入。...3.录入数据的时候,需要使用列表表示学生信息,例如每一个学生用类似列表[['aaa', 'a1', ['11', '22', '33']]来表示。...5.最后自定义一个输出函数,然后在输出函数内根据students内的信息进行相应数据的批量输出,这里成绩输出的时候,我们采用字符串的join方法把多个成绩拼接。

1.2K20

Dart 中的类的定义、构造函数、私有属性和方法、set与get、初始化列表

Dart是一门使用类和单继承的面向对象语言,所有的对象都是类的实例,并且所有的类都是Object的子类。 1. Dart类的定义 ? 2. Dart类的构造函数 ? 3....Dart中的命名构造函数 ? 4. Dart中将类抽离成一个单独的模块 首先将模块写到一个单独的文件中,如下图所示为public文件夹下的Person.dart为一个单独的类。 ?...Dart中的私有属性和私有方法 Dart和其他面向对象语言不一样,没有 public、private、protected这些访问修饰符,但是我们可以使用下划线把一个属性或者方法定义成私有。...需要注意的是,定义为私有属性和私有方法的类必须要抽离放在一个单独的文件中,然后才能真正起到私有的效果。 首先将含有私有属性或私有方法的类放在一个单独的模块中。 ?...在文件中引入含有私有属性和私有方法的类。 ? 6. Dart中get与set修饰符 ? 7. Dart中的初始化列表 Dart中可以在构造函数体运行之前初始化实例变量。 ?

6.5K40
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    R 数据整理(十一: 用purrr包实现更花样的匿名函数使用)

    数据: s <- c('10, 8, 7', '5, 2, 2', '3, 7, 8', '8, 8, 9') 比如map 函数,如果需要使用自定义的无名函数...将无名函数写成“~ 表达式”格式, 表达式就是无名函数定义, 用.表示只有一个自变量时的自变量名, 用.x和.y表示只有两个自变量时的自变量名, 用..1、..2、..3这样的名字表示有多个自变量时的自变量名...需要注意的是, 如果map()等泛函中的无名函数需要访问其它变量的话, 需要理解其变量作用域或访问环境。另外, 无名函数中的其它变量在每次被map()应用到输入列表的元素时都会重新计算求值。...一般这种类型的数据,导入的R 后就表现为嵌套列表的格式,也就是列表中的每个元素也都是列表。...其他有用的函数 比如keep, 可以专门用来选择数据框各列或列表元素中满足某种条件的子集, 这个条件用一个返回逻辑值的函数来给出。

    2.6K30

    tidyverse:R语言中相当于python中pandas+matplotlib的存在

    tidyverse就是Hadley Wickham将自己所写的包整理成了一整套数据处理的方法,包括ggplot2、dplyr、tidyr、readr、purrr、tibble、stringr、forcats...从文件中读取数据 purrr:(提供好用的编程函数 tibble:data.frame升级款 stringr:处理字符,查找、替换等 forcats:处理因子问题 ?...,会自动添加列名 tibble,类型只能回收长度为1的输入 tibble,会懒加载参数,并按顺序运行 tibble,是tbl_df类型 tibble是data.frame的进化版,有如下优点:生成的数据框数据每列可以保持原来的数据格式.../ 03 — %>%:管道函数 ——将左侧的值应用到右侧数据data位置 管道函数在tidyverse中,管道符号是数据整理的主力,可以把许多功能连在一起,而且简洁好看,比起R的基本代码更加容易阅读...#key:将原数据框中的所有列赋给一个新变量key #value:将原数据框中的所有值赋给一个新变量value #…:可以指定哪些列聚到同一列中 #na.rm:是否删除缺失值 widedata <-

    4.2K10

    R编程(二:基本数据类型及其操作之因子、矩阵、数据框和列表)

    不同之处在于,frame work 可以对行和列进行定义(分类函数)。所以可以借助于变量名查询(行名或列名)。...另外,tibble类型允许其中的列是列表类型, 这样, 该列的每个元素就可以是复杂类型, 比如建模结果(列表), 元素之间可以保存不等长的值。...factor_survey_vector summary a factor 通过summary() 函数了解因子中不同类型变量的数值。...列表的提取也可以按照类似数据框的方式提取。、 需要注意的是,列表用一个中括号提取内容,会返回一个列表,列表中包含提取的内容,只有用两个中括号,才会返回该内容本来的格式。...test2 <- read.csv("excise.csv") # 3.使用函数,查看test2的列名。 colnames(test2) # 4.使用函数,查看test2的行数和列数。

    2.8K20

    R入门?从Tidyverse学起!

    这种入门的学习路径属于base R first,学习的流程基本是先了解变量的类型、数据的结构,再深入点就会学到循环与自定义函数。...tidyverse就是他将自己所写的包整理成了一整套数据处理的方法,包括ggplot2,dplyr,tidyr,readr,purrr,tibble,stringr, forcats。...数据整理 tibble格式 R中的对多变量数据的标准保存形式是 dataframe,而tibble是dataframe的进化版,它有如下优点: 1....数据操作速度会更快 如下图,直接查看tibble格式的数据,可以一目了然的看清数据的大小和每列的格式 ? 有两种方式来创建tibble格式的数据 1. 直接创建 ? 2....(对数据分组) 1. filter 只选取Species列中,值为virginica的数据 (这里也是用到了管道符,将filter函数作用于iris数据) ?

    2.6K30

    python中如何定义函数的传入参数是option的_如何将几个参数列表传递给@ click.option…

    如果通过使用自定义选项类将列表格式化为python列表的字符串文字,则可以强制单击以获取多个列表参数: 自定义类: import click import ast class PythonLiteralOption...自定义类用法: 要使用自定义类,请将cls参数传递给@ click.option()装饰器,如: @click.option('--option1', cls=PythonLiteralOption,...这是有效的,因为click是一个设计良好的OO框架. @ click.option()装饰器通常实例化click.Option对象,但允许使用cls参数覆盖此行为.因此,从我们自己的类中继承click.Option...并过度使用所需的方法是一个相对容易的事情....在这种情况下,我们遍历click.Option.type_cast_value()然后调用ast.literal_eval()来解析列表.

    7.7K30

    R for data science (第一章)①Chapter1 使用ggplot2进行数据可视化

    它还告诉您tidyverse中的哪些函数与基本R(或您可能已加载的其他包)中的函数冲突。...这是积极的吗? 负?线性?非线性? mpg数据框 您可以使用ggplot2(又名ggplot2 :: mpg)中的mpg数据框测试您的答案。 数据框是变量(列)和观察(行)的矩形集合。...函数geom_point()为绘图添加一层点,从而创建散点图。 ggplot2附带了许多geom函数,每个函数都为绘图添加了不同类型的图层。 ggplot2中的每个geom函数都采用映射参数。...这定义了数据集中的变量如何映射到可视属性。 mapping参数始终与aes()配对,aes()的x和y参数指定要映射到x和y轴的变量。 ggplot2在data参数中查找映射变量,在本例中为mpg。...要将aesthetic映射到变量,请将aesthetic的名称与aes()中的变量名称相关联。 ggplot2将自动为变量的每个唯一值分配唯一级别(这里是一种独特的颜色),这个过程称为缩放。

    2.8K20

    R优雅绘制小样本间相关性网络图

    >4 observations 报错信息表明rcorr函数在尝试计算Spearman相关性时遇到了问题,原因是数据中的某些变量(列)的观测值数量不足以进行相关性分析。...具体来说rcorr 函数要求每个变量至少有5个观测值来计算相关性。...解决方案 ❝由于在进行实验设计时,通常多为设置3重复,若我们想分析每一组内不同样本之间的相关性就会频繁遇到这种问题,使用内置的R包则无法解决问题,因为需要我们进行自定义分析函数来进行相关性分析. ❞ 加载...) df_cor_r <- df_cor$r df_cor_p <- df_cor$P df_cor_r[df_cor_p>0.05|abs(df_cor_r)<0.7] = 0 将邻接矩阵转换为边列表...edge_list % as_tibble(rownames = "from") %>% pivot_longer(cols = -from, names_to =

    48810

    R数据科学整洁之道:使用 tibble 实现简单数据框

    install.packages('tidyverse') 创建 tibble 因为 tibble 是 tidyverse 的标准功能之一,所以 tidyverse 中几乎所有函数都可以创建 tibble...tidyverse 中许多函数都可以创建 tibble,因为 tibble 是 tidyverse 的标准功能之一。 可以通过 tibble() 函数使用一个向量来创建新 tibble。...tribble() 是定制化的,可以对数据按行进行编码:列标题由公式(以 ~ 开头) 定义,数据条目以逗号分隔,这样就可以用易读的方式对少量数据进行布局: tribble( ~x, ~y, ~z,...打印 tibble 的打印方法进行了优化,只显示前 10 行结果,并且列也是适合屏幕的,这种方式非 常适合大数据集。...tibble 不能进行部分匹配,如果想要访问的列不存在,它会生成一条警告信息。 tibble 打印时更美观。

    1.9K10

    数据处理第2节:将列转换为正确的形状

    转换列:基础部分 您可以使用mutate()函数创建新列。 mutate中的选项几乎是无穷无尽的:你可以对普通向量做任何事情,可以在mutate()函数内完成。...就像第1部分中的select()函数一样,mutate()有变种: *mutate_all()将根据您的进一步说明改变所有列 *mutate_if()首先需要一个返回布尔值的函数来选择列。...您只需传递要在所有列中应用的操作(以函数的形式)。...在这种情况下,您可以包装任何列的选择(使用select()函数内可能的所有选项)并将其包装在vars()中。 其次,它需要以函数形式的变异指令。 如果需要,请使用代字号或funs()之前(见上文)。...在这种情况下,我们有3列描述时间度量。 对于某些分析和图表,可能有必要将它们合二为一。 gather函数需要您为新的描述性列指定名称(“key”),并为值列指定另一个名称(“value”)。

    8.1K30

    「R」dplyr 列式计算

    第二个参数是 .fns,它是应用到数据列上的一个函数或者是一个函数列表,它也可以是像 ~.x/2 这样 「purrr」 风格的公式语法。...你可以通过对第二个参数传入一个函数(包括 lambda 函数)的命名列表来对每个变量同时执行多个函数操作。..._if, _at, _all 「dplyr」 以前的版本允许以不同的方式将函数应用到多个列:使用带有_if、_at和_all后缀的函数。这些功能解决了迫切的需求而被许多人使用,但现在被取代了。..._at() 函数是 「dplyr」 中唯一你需要手动引用变量名的地方,这让它们比较奇怪且难以记忆。 为什么过了这么久才发现 across()?...这是由 base R 提供的,但它并没有很好的文档,我们花了一段时间才发现它是有用的,而不仅仅是理论上的好奇。 我们可以使用数据框让汇总函数返回多列。

    2.4K10

    数据处理第一节:选取列的基本到高级方法选取列列名

    在某些情况下,我添加了一个glimpse()语句,允许您查看输出tibble中选择的列,而不必每次都打印所有数据。.... ---- 选取列 选取列:基础部分 如果目的是选择其中几列,只需在select语句中添加列的名称即可。 添加它们的顺序将决定它们在output中的显示顺序。...另一种方法是通过在列名称前添加减号来取消选择列。 还可以通过此操作取消选择某些列。...如果你必须添加任何否定或参数,你必须将你的函数包装在funs()中,或者在重新创建函数之前添加波形符。 msleep %>% select_if(~!...为避免错误,您还必须仅选择数字列,您可以提前执行此操作以获得更简单的语法,也可以在同一行中执行。

    3K20

    数据处理第3部分:选择行的基本和高级的方法

    Basic row filters 在许多情况下,您不希望在分析中包括所有行,而只包括选择的行。 仅使用特定行的函数在dplyr中称为“filter()”。...在某些情况下,虽然需要根据部分匹配进行过滤。 在这种情况下,我们需要一个函数来评估字符串上的正则表达式并返回布尔值。 每当语句为“TRUE”时,该行将被过滤。...: *filter_all()将根据您的进一步说明过滤所有列 *filter_if()需要一个返回布尔值的函数来指示要过滤的列。...或者您只是过滤所有列的字符串“food”。 在下面的示例代码中,我在所有列中搜索字符串“Ca”。我想保留在任何变量中出现字符串“Ca”的行,所以我将条件包装在any_vars()中。...Filter at 其中一个更强大的函数是filter_at():它不会过滤所有列,也不需要你指定列的类型,你可以通过`vars()选择要发生更改的列。 论据。

    1.3K10
    领券