作为云计算领域的专家,我建议您首先了解两个查询的概念和区别,然后根据您的需求和资源选择合适的查询方法。
概念:
区别:
根据您的需求,您可以选择使用 JOIN 或 UNION。例如,如果您需要合并两个表并根据匹配条件生成一个新表,则可以使用 JOIN。如果您的需求是合并两个查询的结果集,则可以使用 UNION。
如果您需要更多关于云计算和IT互联网领域的名词解释和词汇,请随时提问。
HQL是数据分析过程中的必备技能,随着数据量增加,这一技能越来越重要,熟练应用的同时会带来效率的问题,动辄十几亿的数据量如果处理不完善的话有可能导致一个作业运行几个小时,更严重的还有可能因占用过多资源而引发生产问题,所以HQL优化就变得非常重要,本文我们就深入HQL的原理中,探索HQL优化的方法和逻辑。
最近涉及数据库相关操作较多,公司现有规范也不是太全面,就根据网上各路大神的相关规范,整理了一些自用的规范用法,万望指正。
数据库环境 dev:开发环境,开发可读写,可修改表结构。开发人员可以修改表结构,可以随意修改其中的数据但是需要保证不影响其他开发同事。 qa:测试环境,开发可读写,开发人员可以通过工具修改表结构。 sim:模拟环境,开发可读写,发起上线请求时,会先在这个环境上进行预执行,这个环境也可供部署上线演练或压力测试使用。 real:生产数据库从库(准实时同步),只读环境,不允许修改数据,不允许修改表结构,供线上问题查找,数据查询等使用。 online:线上环境,开发人员不允许直接在线上环境进行数据库操作,如果需要操
翻译过来的意思是:使用的select语句有不同的列数。 因为使用union的两个SQL语句产生的记录的表结构不一致。必须是结构完全一致的记录集合才可以使用UNION。我这边就是两个表的union字段数量不一样,导致上述报错。我的解决办法是在使用 UNION ALL 进行表合并操作时,使用 null as “xxx字段” 或者 ‘’ as “xxx字段”,保证字段顺序和数量一致性。
关于并查集的题目不少,官方给的数据是 30 道(截止 2020-02-20),但是有一些题目虽然官方没有贴并查集标签,但是使用并查集来说确非常简单。这类题目如果掌握模板,那么刷这种题会非常快,并且犯错的概率会大大降低,这就是模板的好处。
前文我们讨论过MySQL优化回表的多种方式:索引条件下推ICP、多范围读取MRR、覆盖索引等
我们遇到的最容易引起困惑的问题就是索引列的顺序。正确的顺序依赖于使用该索引的查询,并且同时需要考虑如何更好地满足排序和分组的需要(顺便说明,本节内容适用于B-Tree索引;哈希或者其他类型的索引并不会像B-Tree索引一样按顺序存储数据)。 在一个多列B-Tree索引中,索引列的顺序意味着索引首先按照最左列进行排序,其次是第二列,等等。所以,索引可以按照升序或者降序进行扫描,以满足精确符合列顺序的ORDER BY、GROUP BY和DISTINCT等子句的查询需求。 所以多列索引的顺序至关重要。在“三星索引”系统中,列顺序也决定了一个索引是否能够成为一个真正的“三星索引”。 对于如何选择索引的列顺序有一个经验法则:将选择性最高的列放到索引最前列。这个建议有用吗?在某些场景可能有帮助,但通常不如避免随机IO和排序那么重要,考虑问题需要更全面(场景不同则选择不同,没有一个放之四海皆准的法则。这里只是说明,这个经验法则可能没有你想象的重要)。 当不需要考虑排序和分组时,将选择性最高的列放在前面通常是很好的。这时候索引的作用只是用于优化WHERE条件的查找。在这种情况下,这样设计的索引确实能够最快地过滤出需要的行,对于WHERE子句中只使用了索引部分前缀列的查询来说选择性也更高。然而,性能不只是依赖于所有索引列的选择性(整体基数),也和查询条件的具体值有关,也就是和值的分布有关。这和选择前缀的长度需要考虑的地方一样。可能需要根据那些运行频率最高的查询来调整索引列的顺序,让这种情况下索引的选择性最高。
整体上分为标准的优化规则和特殊的优化规则,这是为了实现上的扩展性。 标准优化规则 过滤推断前的算子优化-operatorOptimizationRuleSet 过滤推断-Infer Filters 过滤推断后的算子优化-operatorOptimizationRuleSet 下推join的额外谓词-Push extra predicate through join 算子下推(Operator push down)-Project、Join、Limit、列剪裁 算子合并(Operator combine)-
今天主要介绍的是并查集这种数据结构。其本质上是解决某一些特定问题的而设计出的数据结构。大家可以了解下这种数据结构,作为自己知识的储备。
也就是说 , 后台SQL中拼接参数时 , 使用的是单引号 , 固 注入点为 单引号字符串型
创建数据库 create database dbname; 删除数据库 drop database dbname; 选择数据库 use dbname; 创建表 CREATE TABLE IF NOT EXISTS `book`( `id` INT UNSIGNED AUTO_INCREMENT, `title` VARCHAR(100) NULL, `author` VARCHAR(40) NOT NULL, `date` DATE, INDEX title_ind
1. 对sql语句进行优化, 首先对where和order by涉及的列加索引。
在 LeetCode 上有一道题 LeetCode-547 朋友圈[1],题目大意是这样:
本篇文章我们将演示LINQ扩展包基础语法里的多表查询 ,包括交集、并集、差集、去重、合并等实际操作中常用的类型转换手法。目前LINQ支持两种语法,我会在每个案例前先用大家熟知的SQL语句表达,再在后面用C#的两种LINQ语法分别实现。LINQ语法第一次接触难免感到陌生,最好的学习方式就是在项目中多去使用,相信会有很多感悟。
并查集是简洁而优雅的数据结构之一,主要用于解决一些元素分组的问题。它管理一系列不相交的集合,并支持两种操作:
0.SQL标准的执行流程(select) (8) SELECT (9) DISTINCT (11) <TOP_specification> <select_list> (1) FROM <left_table> (3) <join_type> JOIN <right_table> (2) ON <join_condition> (4) WHERE <where_condition> (5) GROUP BY <group_by_list> (6) WITH {CUBE ROLLUP} (7)
版权声明:本文为博主原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。
现在有个需求: 一条 SQL 查出 所有女生用户 和 发布的文章点击量超过 100 的用户 的 id,name,gender 字段
自连接查询,顾名思义,就是自己连接自己,也就是把一张表连接查询多次。我们先来学习一下自连接的查询语法:
在 DB2 数据库中索引采用的是 B+ 树的结构,索引的叶子节点上包含索引键的值和一个指向数据地址的指针。DB2 先查询索引,然后通过索引里记录的指针,直接访问表的数据页。
一、实践中如何优化mysql 1) SQL语句及索引的优化 2) 数据库表结构的优化 3) 系统配置的优化 4) 硬件优化 二、索引的底层实现原理和优化 2.1 底层实现 在DB2数据库中索引采用的是B+树的结构,索引的叶子节点上包含索引键的值和一个指向数据地址的指针。DB2先查询索引,然后通过索引里记录的指针,直接访问表的数据页。 B+树是应数据库所需而出现的一种B树的变形树。 B+树的特点: (1)所有叶节点包含全部关键字及指向相应记录的指针,而且叶节点中将关键字按大小顺序排列
普通索引: 即针对数据库表创建索引; 唯一索引: 与普通索引类似,不同的就是:MySQL数据库索引列的值必须唯一,但允许有空值; 主键索引: 它是一种特殊的唯一索引,不允许有空值。一般是在建表的时候同时创建主键索引; 组合索引: 为了进一步榨取MySQL的效率,就要考虑建立组合索引。即将数据库表中的多个字段联合起来作为一个组合索引。
SQL语句:select * from student left join score on student.Num=score.Stu_id;
比如event_value是一个json格式的字段,然后想获取里面的id作为单独一列
在计算机科学中,并查集(英文:Disjoint-set data structure,直译为不交集数据结构)是一种数据结构,用于处理一些不交集(Disjoint sets,一系列没有重复元素的集合)的合并及查询问题。并查集支持如下操作:
UNION去重且排序 UNION ALL不去重不排序 UNION用的比较多union all是直接连接,取到得是所有值,记录可能有重复 union 是取唯一值,记录没有重复 1、UNION 的语法如下: [SQL 语句 1] UNION [SQL 语句 2] 2、UNION ALL 的语法如下: [SQL 语句 1] UNION ALL [SQL 语句 2] 效率: UNION和UNION ALL关键字都是将两个
UNION用的比较多union all是直接连接,取到得是所有值,记录可能有重复 union 是取唯一值,记录没有重复 1、UNION 的语法如下: [SQL 语句 1] UNION [SQL 语句 2] 2、UNION ALL 的语法如下: [SQL 语句 1] UNION ALL [SQL 语句 2] 效率: UNION和UNION ALL关键字都是将两个结果集合并为一个,但这两者从使用和效率上来说都有所不同。 1、对重复结果的处理:UNION在进行表链接后会筛选掉重复的记录,Union All不会去除重复记录。 2、对排序的处理:Union将会按照字段的顺序进行排序;UNION ALL只是简单的将两个结果合并后就返回。 从效率上说,UNION ALL 要比UNION快很多,所以,如果可以确认合并的两个结果集中不包含重复数据且不需要排序时的话,那么就使用UNION ALL。
语法分析> 语义分析> 视图转换 >表达式转换> 选择优化器 >选择连接方式 >选择连接顺序 >选择数据的搜索路径 >运行“执行计划”
UNION去重且排序 UNION ALL不去重不排序 UNION用的比较多union all是直接连接,取到得是所有值,记录可能有重复 union 是取唯一值,记录没有重复 1、UNION 的语法如下: [SQL 语句 1] UNION [SQL 语句 2] 2、UNION ALL 的语法如下: [SQL 语句 1] UNION ALL [SQL 语句 2] 效率: UNION和UNION ALL关键字都是将两个结果集合并为一个,
UNION用的比较多union all是直接连接,取到得是所有值,记录可能有重复 union 是取唯一值,记录没有重复 1、UNION 的语法如下: [SQL 语句 1] UNION [SQL 语句 2]
MySQL 可以很好的支持大数据量的存取,但是一般说来,数据库中的表越小,在它上面执行的查询也就会越快。因此,在创建表的时候,为了获得更好的性能,我们可以将表中字段的宽度设得尽可能小。例如,在定义邮政编码这个字段时,如果将其设置为CHAR(255),显然给数据库增加了不必要的空间,甚至使用VARCHAR这种类型也是多余的,因为CHAR(6)就可以很好的完成任务了。同样的,如果可以的话,我们应该使用MEDIUMINT而不是BIGIN来定义整型字段。
索引是一把双刃剑,它可以提高查询效率但也会降低插入和更新的速度并占用磁盘空间
并查集(Union Find),从字面意思不太好理解这东西是个啥,但从名字大概可以得知与查询和集合有关,而实际也确实如此。并查集实际上是一种很不一样的树形结构,用于处理一些不相交集合(Disjoint Sets)的合并及查询问题。
联合查询,它是用 union 关键字把多条 select 语句的查询结果合并为一个结果集。 纵向合并的前提是被合并的结果集的字段数量、顺序和数据类型必须完全一致。字段名不一样的情况下,会将第一个结果集的字段名作为合并后的虚拟结果集的字段名。
在数据库中,UNION和UNION ALL关键字都是将两个结果集合并为一个,但这两者从使用和效率上来说都有所不同。
union all是直接连接,取到得是所有值,记录可能有重复 union 是取唯一值,记录没有重复 1、UNION 的语法如下:
索引合并是MySQL查询优化器在处理复杂查询条件时使用的一种技术。简单来说,当WHERE子句中有多个条件,并且每个条件都可以利用不同的索引时,优化器会考虑将这些索引的扫描结果合并,从而得到最终的结果集。
在数据库开发的初期,或者在系统刚上线的初期,由于数据量比较少,一些查询 SQL 语句、视图、存储过程编写等体会不出 SQL 语句各种写法的性能优劣,但是随着数据库中数据的增加,像数据仓库这种 TB 级别的海量数据,劣质SQL语句和优质SQL语句之间的速度差别可以达到上百倍,因此写 sql 不能简单的能查出相应的数据即可,而是要写出高质量的 SQL 语句,提高 SQL 语句的执行速度。
国庆假期花了一些时间,首次尝试并玩转 grafana,这几天继续不断优化和完善,如今看着自己的成果,相当满意。——逐步接近我想要的理想后台啦。
下面这篇文章来自某微信公众号,作者收集了oracle 较早版本的一些SQL优化"技巧",文章标题起的很是诱人.
我们要做到不但会写SQL,还要做到写出性能优良的SQL,以下为笔者学习、摘录、并汇总部分资料与大家分享! (1)选择最有效率的表名顺序(只在基于规则的优化器中有效) ORACLE 的解析器按照从右到左的顺序处理FROM子句中的表名,FROM子句中写在最后的表(基础表 driving table)将被最先处理,在FROM子句中包含多个表的情况下,你必须选择记录条数最少的表作为基础表。如果有3个以上的表连接查询, 那就需要选择交叉表(intersection table)作为基础表, 交叉表是指那
https://github.com/lihuigang/hive-bitmap-udf
1 使用SET NOCOUNT ON 选项: 缺省地,每次执行SQL语句时,一个消息会从服务端发给客户端以显示SQL语句影响的行数。这些信息对客户端来说很少有用。通过关闭这个缺省值,你能减少在服务端和客户端的网络流量,帮助全面提升服务器和应用程序的性能。为了关闭存储过程级的这个特点,在每个存储过程的开头包含“SET NOCOUNT ON”语句。 2 正确使用UNION和UNION ALL: 许多人没完全理解UNION和UNION SELECT是怎样工作的,因此,结果浪费了大量不必要的SQLServer资源。当使用UNION时,它相当于在结果集上执行SELECT DISTINCT。换句话说,UNION将联合两个相类似的记录集,然后搜索重复的记录并排除。如果这是你的目的,那么使用UNION是正确的。但如果你使用UNION联合的两个记录集没有重复记录,那么使用UNION会浪费资源,因为它要寻找重复记录,即使你确定它们不存在。 所以如果你知道你要联合的记录集里没有重复,那么你要使用UNION ALL,而不是UNION。UNION ALL联合记录集,但不搜索重复记录,这样减少SQLServer资源的使用,从而提升性能。 3 尽量不用SELECT * : 绝大多数情况下,不要用 * 来代替查询返回的字段列表,用 * 的好处是代码量少、就算是表结构或视图的列发生变化,编写的查询SQL语句也不用变,都返回所有的字段。但数据库服务器在解析时,如果碰到 *,则会先分析表的结构,然后把表的所有字段名再罗列出来。这就增加了分析的时间。 4 慎用SELECT DISTINCT: DISTINCT子句仅在特定功能的时候使用,即从记录集中排除重复记录的时候。这是因为DISTINCT子句先获取结果集然后去重,这样增加SQLServer有用资源的使用。当然,如果你需要去做,那就只有去做了。 当如果你知道SELECT语句将从不返回重复记录,那么使用DISTINCT语句对SQLServer资源不必要的浪费。 5 少用游标: 任何一种游标都会降低SQLServer性能。有些情况不能避免,大多数情况可以避免。所以如果你的应用程序目前正在使用TSQL游标,看看这些代码是否能够重写以避免它们。如果你需要一行一行的执行操作,考虑下边这些选项中的一个或多个来代替游标的使用: 使用临时表 使用WHILE循环 使用派生表 使用相关子查询 使用CASE语句 使用多个查询 上面每一个都能取代游标并且执行更快。 如果你不能避免使用游标,至少试着提高它们的速度,找出加速游标的方法。 6 选择最有效率的表名顺序: SQLSERVER的解析器按照从右到左的顺序处理FROM子句中的表名,因此FROM子句中写在最后的表(基础表driving table)将被最先处理,在FROM子句中包含多个表的情况下,必须选择记录条数最少的表作为基础表,当SQLSERVER处理多个表时,会运用排序及合并的方式连接它们。首先,扫描第一个表(FROM子句中最后的那个表)并对记录进行排序;然后扫描第二个表(FROM子句中最后第二个表);最后将所有从第二个表中检索出的记录与第一个表中合适记录进行合并。 例如: 表 TAB1有 16384 条记录,表 TAB2 有5条记录,选择TAB2作为基础表 (最好的方法): select count(*) from TAB1 a, TAB2 b 选择TAB1作为基础表 (不佳的方法): select count(*) from TAB2 a, TAB1 b 如果有3个以上的表连接查询,那就需要选择交叉表(intersection table)作为基础表,交叉表是指那个被其他表所引用的表。 7 使用表的别名(Alias): 当在SQL语句中连接多个表时,请使用表的别名并把别名前缀于每个Column上,这样可以减少解析的时间并减少那些由Column歧义引起的语法错误。 8 SARG你的WHERE条件: ARGE来源于"Search Argument"(搜索参数)的首字母拼成的"SARG",它是指WHERE子句里,列和常量的比较。如果WHERE子句是sargable(可SARG的),这意味着它能利用索引加速查询的完成。如果WHERE子句不是可SARG的,这意味着WHERE子句不能利用索引(或至少部分不能利用),执行的是全表或索引扫描,这会引起查询的性能下降。 在WHERE子句里不可SARG的搜索条件如"IS NULL", "<>", "!=", "!>", "!<", "NOT", "NOT EXISTS", "NOT IN", "NOT LIKE"和"LIKE '%500'",通常(但不总是)会阻止查询优
. (1) 选择最有效率的表名顺序(只在基于规则的seo/' target='_blank'>优化器中有效): ORACLE 的解析器按照从右到左的顺序处理FROM子句中的表名,FROM子句中写在最后的表(基础表 driving table)将被最先处理,在FROM子句中包含多个表的情况下,你必须选择记录条数最少的表作为基础表。如果有3个以上的表连接查询, 那就需要选择交叉表(intersection table)作为基础表, 交叉表是指那个被其他表所引用的表. (2) WHERE子句中的连接顺序.:
ORACLE的解析器按照从右到左的顺序处理FROM子句中的表名,FROM子句中写在最后的表(基础表 driving table)将被最先处理,在FROM子句中包含多个表的 情况下,你必须选择记录条数最少的表作为基础表。如果有 3 个以上的表连接查询, 那就需要选择交叉表 (intersection table)作为基础表,交叉表是指那个被其他表所引用的表。
(1) 选择最有效率的表名顺序(只在基于规则的优化器中有效): ORACLE的解析器按照从右到左的顺序处理FROM子句中的表名,FROM子句中写在最后的表(基础表 driving table)将被最先处理,在FROM子句中包含多个表的情况下,你必须选择记录条数最少的表作为基础表。如果有3个以上的表连接查询, 那就需要选择交叉表(intersection table)作为基础表, 交叉表是指那个被其他表所引用的表. (2) WHERE子句中的连接顺序.: ORACLE采用自下而上
在应用系统开发初期,由于开发数据库数据比较少,对于查询SQL语句,复杂视图的的编写等体会不出SQL语句各种写法的性能优劣,但是如果将应用系统提交实际应用后,随着数据库中数据的增加,系统的响应速度就成为目前系统需要解决的最主要的问题之一。系统优化中一个很重要的方面就是SQL语句的优化。对于海量数据,劣质SQL语句和优质SQL语句之间的速度差别可以达到上百倍,可见对于一个系统不是简单地能实现其功能就可,而是要写出高质量的SQL语句,提高系统的可用性。
今天分享到的是一种相对冷门的数据结构 —— 并查集。虽然冷门,但是它背后体现的算法思想却非常精妙,在处理特定问题上能做到出奇制胜。那么,并查集是用来解决什么问题的呢?
领取专属 10元无门槛券
手把手带您无忧上云