本文重点介绍 kafka 的两类常见数据迁移方式:1、broker 内部不同数据盘之间的分区数据迁移;2、不同 broker 之间的分区数据迁移。
3. CKafka 消费端新起消费者,配置新的 CKafka 集群的 bootstrap-server,消费新的 CKafka 集群。
本文主要总结当Kafka集群流量达到 万亿级记录/天或者十万亿级记录/天 甚至更高后,我们需要具备哪些能力才能保障集群高可用、高可靠、高性能、高吞吐、安全的运行。
Streams Replication Manager(SRM)是一种企业级复制解决方案,可实现容错、可扩展且健壮的跨集群Kafka主题复制。SRM提供了动态更改配置的功能,并使Topic属性在高性能的集群之间保持同步。SRM还提供了自定义扩展,可促进安装、管理和监视,从而使SRM成为针对任务关键型工作负载而构建的完整复制解决方案。本文主要讨论SRM的主要用例和用例的实现架构。
确定地域:EMR集群搭建的地理位置,由于集群是通过公网访问,一般建议选择接近企业所在位置,网络传输效率会更快。
Kafka的使用场景非常广泛,一些实时流数据业务场景,均依赖Kafka来做数据分流。而在分布式应用场景中,数据迁移是一个比较常见的问题。关于Kafka集群数据如何迁移,今天叶秋学长将为大家详细介绍。
前段时间收到某个 Kafka 集群的生产客户端反馈发送消息耗时很高,于是花了一段时间去排查这个问题,最后该集群进行扩容,由于某些主题的当前数据量实在太大,在对这些主题迁移过程中花费了很长一段时间,不过这个过程还算顺利,因为在迁移过程中也做足了各方面的调研,包括分区重平衡过程中对客户端的影响,以及对整个集群的性能影响等,特此将这个过程总结一下,也为双十一打了一剂强心剂。
腾讯云CKafka是基于Apache Kafka 的分布式、高可扩展以及高吞吐的云端Kafka服务。腾讯云CKafka针对开源Kafka进行了多种优化,其中包括无锁队列优化、异步刷盘优化、多版本支持以及GC优化等优化手段,对开源Kafka性能达到了数倍的提高。与用户自己部署Kafka相比,腾讯云CKafka无需用户关心Kafka集群细节,用户无需维护Kafka集群直接使用,同时为用户提供丰富的监控指标。由于腾讯云CKafka与社区Kafka的协议一致,用户只需要够买实例后便可无缝接入。再者,CKafka允许
导语 熟悉Apache Kafka的同学都知道,当Kafka集群负载到达瓶颈或者出现突发流量需要紧急扩容时,新加入集群的节点需要经过数据迁移才能均分集群压力。而数据迁移会因为数据堆积量,节点负载等因素的影响,导致迁移时间较长,甚至出现迁移不动的情况。同时数据迁移也会增大当前节点的压力,可能导致集群进一步崩溃。本文将探讨应对需要紧急扩容的技术方案。 作者介绍 许文强 腾讯高级工程师 腾讯云CKafka研发负责人,Apache Kafka Contributor 拥有多年分布式系统研发经验,主要
互联网和Web的蓬勃发展正在改变着我们的世界,随着互联网的不断发展和壮大,企业数据规模越来越大,并发量越来越高,关系数据库无法应对新的负载压力,随着Hadoop,Cassandra,MongoDB,Redis等NoSQL数据库的兴起,因其良好的可扩展性,弱化数据库的设计范式,弱化一致性要求,在解决海量数据和高并发的问题上明显优于关系型数据库。因而很快广泛应用于互联网业务中。 Redis作为基于K-V的NoSQL数据库,具有高性能、丰富的数据结构、持久化、高可用、分布式、支持复制等特性。从09年至今,经历8年
本文最初发表于 Medium 博客,经原作者 Natan Silnitsky 授权,InfoQ 中文站翻译并分享。
是指应用程序对应用程序的一种高效可靠的消息传递的通信方法,通过提供消息传递和消息排序模型,他可以在分布式环境下扩展进程间的通信,典型的生产者和消费者的代表
首先一个点,明白为什么要搭建集群。搭建集群的目的主要是为了避免单点故障,提高系统的高可用和性能的线性扩展。
前言 在TDBank的接入数据中,有86%的数据流向TDW集群,因此为了减少流量在IDC间穿越,TDBank的集群选择跟TDW部署在同一个IDC。但是,随着业务数据的大规模发展与接入,TDW所在IDC的机器资源已无法满足需求,因此需要迁移到其他IDC。除了因资源不足的迁移外,我们还对重点业务进行隔离的迁移,还有底层架构无法兼容带来的集群的迁移。经过多次迁移经验积累,当前我们基本上可以做到集群的无缝迁移。下面介绍TDBank集群迁移的两种通用方案。 方案一: 先迁移数据源,再迁移后端消费应用。 适用场景: 集
下面我们有请腾讯云基础架构部高级工程师杨原给我们带来主题分享——腾讯云Kafka自动化运营实践。
ClickHouse是一个用于联机分析(OLAP)的列式数据库管理系统(DBMS)。它于2016年以apache 2.0协议开源,以优秀的查询性能,深受广大大数据工程师欢迎。为了服务客户业务,腾讯云于2020年4月正式上线ClickHouse服务。
互联网和Web的蓬勃发展正在改变着我们的世界,随着互联网的不断发展和壮大,企业数据规模越来越大,并发量越来越高,关系数据库无法应对新的负载压力,随着Hadoop,Cassandra,MongoDB,Redis等NoSQL数据库的兴起,因其良好的可扩展性,弱化数据库的设计范式,弱化一致性要求,在解决海量数据和高并发的问题上明显优于关系型数据库。因而很快广泛应用于互联网业务中。 Redis作为基于K-V的NoSQL数据库,具有高性能、丰富的数据结构、持久化、高可用、分布式、支持复制等特性。从09年至今,经历
Kafka在目前的大数据技术生态体系当中,是尤其得到重用的,尤其是针对于实时消息流处理,Kafka的性能是值得称赞的。Kafka学习,也是大数据学习当中的重要一课。今天的大数据开发学习分享,我们就主要来讲讲Kafka入门须知的几组核心概念。
kafka简介:Kafka是一个开源流处理平台,Kafka是通过解析数据库端日志来进行发布订阅消息的系统,它可以处理消费者在网站中的所有动作流数据。
分布式HTAP数据库 TBase(TencentDB for TBase,TBase)是基于postgresql-xc的BSD开源协议 ,进行自主研发的分布式数据库系统。TBase 集高扩展性、SQL 高兼容度、完整的分布式事务支持、多级容灾及多维度资源隔离等功能于一身,目TBaseV2.15完全兼容pgV10。采用无共享的集群架构,提供容灾、备份、恢复、监控、安全、审计等全套解决方案,适用于TB- PB级的数据应用场景。
导语 本文整理自 Pulsar Summit Asia 2022 技术峰会上腾讯云中间件高级研发工程师韩明泽的分享《基于跨地域复制实现租户跨集群迁移》。本文主要介绍基于跨地域数据复制和订阅进度同步的实现及优化,以及腾讯云在跨集群迁移过程中遇到的问题及租户跨集群迁移解决方案。 作者简介 韩明泽 毕业于武汉大学,腾讯云中间件高级研发工程师,拥有多年消息中间件开发与运维经验,RoP (RocketMQ-on-Pulsar) Maintainer,Apache Pulsar 贡献者。 订阅进度同步的实现及优化
业务每天会产生大量日志,日志规模庞大,因为业务日志量大,滚动频繁,不可能永久保存,只能定时收集日志,将业务日志归集到一个中心,再做计算。对于实时收集的日志需要一个缓存队列来存储。
2022年,搜狐智能媒体完成了迁移腾讯云的弹性计算项目,其中大数据业务整体都迁移了腾讯云,上云之后的整体服务性能、成本控制、运维效率等方面都取得了不错的效果,达到了预期的降本增效目标。
1. 腾讯微服务平台TSF:支持虚拟机部署应用的健康检查和滚动发布;支持Go语言治理框架,通过mesh的方式支持Dubbo协议和Dubbo应用的服务治理能力。
当下,随着数字化技术不断深入,愈来愈多企业将核心业务搬到线上。业务系统高可用、可扩展、容灾能力决定企业系统的连续性,中间件作为构建企业核心系统的重要组成部分,其高可用容灾能力也将决定应用系统的。本文结合腾讯云中间件各PaaS产品的容灾能力及实践,以一个行业头部客户业务容灾实践举例,来展开说明基于腾讯云中间件PaaS层相关产品的实践。
AutoMQ1 作为一款流系统,被广泛应用在客户的核心链路中,对可靠性的要求非常的高。所以我们需要一套模拟真实生产场景、长期运行的测试环境,在注入各种故障场景的前提下验证 SLA 的可行性,为新版本的发布和客户的使用提供信心保证。基于这样的考虑,我们研发了一套针对流系统的自动化持续测试平台 Marathon。在实现 Marathon 这套框架之前,我们提炼出三个设计原则:
改造总是要付出很多代价的,肯定会跌很多坑,这是必然的... 性能问题也总会呈现先下降后再上升的一个历程(调试、磨合、找到针对性、适应性解决方案)。
有想进滴滴LogI开源用户群的加我个人微信: jjdlmn_ 进群(备注:进群) 群里面主要交流 kakfa、es、agent、LogI-kafka-manager、等等相关技术; 群内有专人解答你的问题 对~ 相关技术领域的解答人员都有; 你问的问题都会得到回应
李猛(ynuosoft),Elastic-stack产品深度用户,ES认证工程师,2012年接触Elasticsearch,对Elastic-Stack开发、架构、运维等方面有深入体验,实践过多种Elasticsearch项目,最暴力的大数据分析应用,最复杂的业务系统应用;业余为企业提供Elastic-stack咨询培训以及调优实施。
自 Kubernetes v1.14 引入容器存储接口(Container Storage Interface, CSI)的工作达到 alpha 阶段后,自 v1.17 起,Kubernetes 树内存储插件(in-tree storage plugin)向 CSI 的迁移基础设施已步入 beta 阶段。 自那时起,Kubernetes 存储特别兴趣组(special interest groups, SIG)及其他 Kubernetes 特别兴趣组就在努力确保这一功能的稳定性和兼容性,为正式发布做准备。 本文旨在介绍该功能的最新开发进展,以及 Kubernetes v1.17 到 v1.23 之间的变化。此外,我还将介绍每个存储插件的 CSI 迁移功能达到正式发布阶段的未来路线图。
深夜接到客户紧急电话,反馈腾讯云kafka中有大量消息堆积未及时消费。每分钟堆积近100w条数据。但是查看es监控,各项指标都远还没到性能瓶颈。后天公司就要搞电商促销活动,到时候数据量是现在的至少2倍。这让客户很是着急。那这究竟是怎么回事呢?该从何排查才能发现问题所在呢?下面我们一起还原“案发”现场。
通过日常生活的吃饭场景,形象地解释了消息队列的工作原理,包括消息主题、生产者、消费者、消息存储和消费等核心概念。这些概念抽象起来可能较难理解,但结合具象的例子就很容易理解了
熟悉Apache Kafka的同学都知道,当Kafka集群负载到达瓶颈或者出现突发流量需要紧急扩容时,新加入集群的节点需要经过数据迁移才能均分集群压力。而数据迁移会因为数据堆积量,节点负载等因素的影响,导致迁移时间较长,甚至出现迁移不动的情况。同时数据迁移也会增大当前节点的压力,可能导致集群进一步崩溃。
华润数科城市与公共事业部门下属项目组近期完成了一个地产行业遗留复杂业务系统的微服务化改造,目前项目已经成功上线,系统切换过程中实现了原单体系统在线业务数据分批无缝无损迁移到微服务架构新系统,确保了业务平滑过渡。本文分享我们在此次数据迁移过程中的思考、探索和实践总结,希望能够为有类似需求的朋友们提供一些经验借鉴。
如果是第一种场景,数据迁移过程中可以停止写入,可以采用诸如elasticsearch-dump、logstash、reindex、snapshot等方式进行数据迁移。实际上这几种工具大体上可以分为两类:
在上一篇中我们讲了通用优惠券系统的设计,这篇主要是以优惠券重构后,我们现有系统接入到该通用优惠券系统过程中遇到的数据迁移与一致性问题相关的思考与实践。我们早期的优惠券系统使用的是ckv的存储,后来为了统一,全部改为使用redis储存了,这里首先一个数据迁移点是 ckv----->redis的迁移,另一个数据迁移点是上海redis----->深圳redis。之所以会有redis --->redis的迁移,主要是刚开始我们redis是和别人混部,选择了一个上海的机房,由于整个服务几乎都部署在广深地区,所以需要迁回来,并且单独一个redis集群存储,不在混部。
通常情况下,企业中会采取轮询或者随机的方式,通过Kafka的producer向Kafka集群生产数据,来尽可能保证Kafk分区之间的数据是均匀分布的。
作者 | 沈文兵 新浪公司是一家服务于中国及全球华人社群的领先网络媒体公司。其业务涵盖新浪媒体、微博和新浪金融。新浪通过门户网站新浪网、新浪移动、新浪财经以及社交媒体平台微博组成的数字媒体网络,帮助广大用户获得专业媒体、机构和个人创作的多媒体内容并与他人进行兴趣分享和社交互动。 其中,微博是人们在线创作、分享和发现内容的中国领先社交媒体平台。新浪微博于 2009 年上线,是中国头部、流行的社交媒体平台,提供在线创作、分享和发现优质内容的服务。据微博 2022 年第一季度财报,微博月活跃用户为 5.82 亿
随着腾讯云Elasticsearch产品功能越来越丰富、产品体验越来越好。越来越多的客户将自建的ES集群或者部署在其他云厂商的 ES 集群迁移到腾讯云上来。为了更加方便快捷地帮助客户完成集群迁移工作,下面简单介绍下可提供的两种迁移方案,离线迁移和在线迁移。
3.2 后端的服务从消息队列里面获取到请求,完成后续的秒杀处理流程。然后再给用户返回结果。
生产者:Producer 往Kafka集群生成数据消费者:Consumer 往Kafka里面去获取数据,处理数据、消费数据Kafka的数据是由消费者自己去拉去Kafka里面的数据主题:topic分区:partition 默认一个topic有一个分区(partition),自己可设置多个分区(分区分散存储在服务器不同节点上)
Kafka在大规模内部托管和管理方面确实很困难,但它提供的实际好处和功能超过了运营方面的挑战。
RocketMQ是一个高可用、高性能、高可靠的分布式消息队列,相对于kafka更适合处理业务系统之间的消息。
本文盘点下到Kafka 2.4.1版本以来的一些亮点,这些亮点或笔者实际中踩过的坑、或可能将来会在实践中使用、或个人关注的,点击官方发布日志连接查看全貌。
上一篇文章,我们详细介绍了开发基于 PaaSTA 的新部署模型的架构和动机。现在想分享我们将现有 Kafka 集群从 EC2 无缝迁移到基于 Kubernetes 的内部计算平台的策略。为了帮助促进迁移,我们构建了与集群架构的各种组件接口的工具,以确保该过程是自动化的,并且不会影响用户读取或写入 Kafka 记录的能力。
云原生大潮风起云涌,企业不再停留在理念层面,目前已在多方面落地。消息队列作为关键技术基础设施之一,也在云原生时代面临着挑战和机会。本文从传统消息队列上云所面临的三大挑战说起,并以 Apache Pulsar 为技术案例,深入浅出地讲解了如何打造适配云原生的消息队列。希望本文能对大家提供参考。 PART ONE 背景介绍 如今,云原生的概念已经渗透到了软件开发的方方面面。云原生不再只是未来的设想,而是一个现在进行时。开发人员在开发设计之初就需要考虑未来如何在云原生环境上部署、运行服务,即如何“上云”。
领取专属 10元无门槛券
手把手带您无忧上云