首页
学习
活动
专区
圈层
工具
发布

根据分组依据对Java集合元素进行分组

业务背景:在项目中有个“分账”功能,就是支付的钱一部分要根据不同商品的分账金额自动分给平台提供商。 有以下业务模型: 商户号:提供给每个商家的一种凭证号码。 分销商:平台上的卖家。...,但分解后通常会出现一个订单中会有同一个商户号的若干商品,所以,必须要对分解出来的数据进行分组统计。...下面贴出模拟过程的完整代码,由于是模拟,所以部分地方数据直接自己构造进去了: /** * 模拟中国电信翼支付的分账功能接口调用的参数字符串 * 根据分组依据对集合进行分组 * @author ZhangBing...*/ public class CollectionGroupTest { /*** * 分组依据接口,用于集合分组时,获取分组依据 * @author ZhangBing...setFxMoney(item.getFxSplitMoney()).setItemValue(item.getItemValue())) ; } //对得到的集合进行分组

3.2K10

Java对List列表进行分组处理(对List列表固定分组对List列表平均分组)

将一组数据平均分成n组 即:数据分组数固定为N,每组数据个数不定,每组个数由List列表数据总长度决定 /** * 将一组数据平均分成n组 * * @param source 要分组的数据源 *...1) * number + offset); } result.add(value); } return result; } ---- 将一组数据固定分组...,每组n个元素 即:数据分组数不定,每组数据固定为N个,分组数由List列表数据总长度决定 方法一: /** * 将一组数据固定分组,每组n个元素 * @param source 要分组的数据源...); } } result.add(subset); } return result; } 方法二 /** * 将一组数据固定分组...,每组n个元素 * * @param source 要分组的数据源 * @param n 每组n个元素 * @param * @return */ public static

4.4K20
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    使用变量对 SQL 进行优化

    1、什么是变量 变量其实就是我们定义的一个可变参数,其基本语法如下: --定义一个名称为@I的变量,指定其类型为整数 DECLARE @I VARCHAR(20) --对变量@I赋值为 SET @I='...赋值部分SET也是固定写法,就是对变量@I进行赋值,=右边的就是赋值内容了 定义好变量后就可以将其带入到查询语句中了,每次只需要修改赋值部分,查询语句就会根据赋值内容查询出相应的结果 2、为什么要使用变量...我们使用变量对其进行修改 DECLARE @ORDER_ID VARCHAR(20) SET @ORDER_ID='112' SELECT * FROM T1 WHERE ORDER_ID=@ORDER_ID...如果单独查询某个语句时间很久,比如超过半个小时了,这种使用变量没有什么明显的效果。 4、变量窥测 事物都存在两面性,变量对常见查询可以提高查询效率。...这个问题就是著名的“变量窥测”,建议对于“倾斜字段”不要采用绑定变量。 今天的内容讲到这里,如果对变量还有什么不明白的,可以在底下留言,我会一一回复的。

    73310

    Java8 Stream groupingBy对List进行分组

    大家好,又见面了,我是你们的朋友全栈君。 提到Group By,首先想到的往往是sql中的group by操作,对搜索结果进行分组。...其实Java8 Streams API中的Collector也支持流中的数据进行分组和分区操作,本片文章讲简单介绍一下,如何使用groupingBy 和 partitioningBy来对流中的元素进行分组和分区...groupingBy 首先看一下Java8之前如果想对一个List做分组操作,我们需要如下代码操作: @Test public void groupListBeforeJava8() { Map...scene; private Integer placement; private Long bid; } 对TestData的List分组,统计每个sene已被占用的placement...,我当时直接使用groupIngBy进行分组,得到了一个Map的map,看似完成了目标需求,但当我审查结果的时候,发现List中存在重复现象。

    4.8K20

    使用 Python 对相似索引元素上的记录进行分组

    在 Python 中,可以使用 pandas 和 numpy 等库对类似索引元素上的记录进行分组,这些库提供了多个函数来执行分组。基于相似索引元素的记录分组用于数据分析和操作。...在本文中,我们将了解并实现各种方法对相似索引元素上的记录进行分组。 方法一:使用熊猫分组() Pandas 是一个强大的数据操作和分析库。...groupby() 函数允许我们根据一个或多个索引元素对记录进行分组。让我们考虑一个数据集,其中包含学生分数的数据集,如以下示例所示。...itertools 模块提供了一个 groupby() 函数,该函数根据键函数对可迭代对象的元素进行分组。...Python 方法和库来基于相似的索引元素对记录进行分组。

    2.9K30

    stream的分组_java快速对list分组

    ,使用提供的字段对集合元素进行分组,返回一个Map的元素集> /** * groupBy方法1,groupingBy(Function) * * 要求:先按city分组,每个分组里面是一个员工集合...,按提供的字段进行分组。...* 先按城市分组,再对每个组里面的员工姓名放入Set,得到每个城市的姓氏集 */ @Test public void test4(){ List emps = getEmps(...,一个最终类型的生产者,一个收集器 下面的示例:先按城市分组,然后收集每个城市的姓氏集,然后放入一个TreeMap,得到最终结果。...(按城市名称排了序 /** * 3个参数的方法:groupingBy(Function,Supplier,Collector) * 要求:要计算每个城市中人的姓氏集,并对城市名称进行排序 *

    1.8K10

    「R」怎么对连续变量分组并进行生存分析

    在探究基因表达、基因拷贝数等连续变量对癌症病人的预后情况的影响时,我不得不面对和处理的主要问题是如何对这种连续型的变量进行分组,然后进行相应的生存分析。...做科研分析的朋友可能都比较了解,针对变量数值分组,一般是采用中位数、四分位数或者均值这些基本描述统计量。如果更细致地,可以按百分比,例如Top/Bottom 5%啊,10%啊之类的进行划分。...第一个分组函数尽量不要改动,第二个画图函数涉及比较多的参数设定,使用时自由度更高,可以根据自己的需要进行修改。...使用函数对基因表达进行分组,分组方式是median中位数。...plot of chunk plot_surv2 使用百分比(上下百分之多少),并确定使用的比例(1表示100%)分组并进行绘图。

    4.5K10

    使用 Python 对相似的开始和结束字符单词进行分组

    在 Python 中,我们可以使用字典和循环等方法、利用正则表达式和实现列表推导等方法对具有相似统计和结束字符的单词进行分组。该任务涉及分析单词集合并识别共享共同开始和结束字符的单词组。...然后,我们按照与方法 1 中类似的过程,根据单词的开头和结尾字符对单词进行分组。...,可以根据单词的开头和结尾字符对单词进行分组。...我们使用三种不同的方法对单词进行分组:使用字典和循环,使用正则表达式和使用列表理解。...通过采用这些技术,您可以有效地对单词进行分组并从文本数据中获得有价值的见解,从而为各种自然语言处理应用程序开辟了可能性。

    1.2K10

    Spring Boot 2.4版本前后的分组配置变化及对多环境配置结构的影响

    前几天在《Spring Boot 2.4 对多环境配置的支持更改》一文中,给大家讲解了Spring Boot 2.4版本对多环境配置的配置变化。...除此之外,还有一些其他配置变化,所以今天我们就继续讲讲其他的更新内容! spring.profiles.include对于这个配置项,你是否熟悉呢?...2.4之前的分组配置 先来看看2.4版本之前的分组配置,我们用下面这个例子来介绍: spring:   profiles:     active: "dev" --- spring.profiles:...在2.3和之前版本的时候,我们通常就是这样来分组配置不同中间件的。...而这次分组的配置改变,让激活配置、环境配置集中到了默认配置里,其他的profile定义是环境+配置分组的组合内容。

    67610

    不要再对类别变量进行独热编码了

    这意味着一个变量可以很容易地使用其他变量进行预测,从而导致并行性和多重共线性的问题。 ? 最优数据集由信息具有独立价值的特征组成,而独热编码创建了一个完全不同的环境。...也称为均值编码,将列中的每个值替换为该类别的均值目标值。这允许对分类变量和目标变量之间的关系进行更直接的表示,这是一种非常流行的技术(尤其是在Kaggle比赛中)。 ? 这种编码方法有一些缺点。...但是,这种编码方法对y变量非常敏感,这会影响模型提取编码信息的能力。 由于每个类别的值都被相同的数值所取代,模型可能会倾向于过拟合它所看到的编码值(例如,将0.8与某个与0.79完全不同的值相关联)。...这将消除异常值的影响,并创建更多样化的编码值。 ? 由于模型对每个编码类不仅给予相同的值,而且给予一个范围,因此它学会了更好地泛化。...‘Non-events’是那些不属于某个类的百分比。使用Weight of Evidence因变量建立单调的关系,并在逻辑尺度上确保类别,这对于逻辑回归来说很自然。

    2.7K20

    特征锦囊:如何对类别变量进行独热编码?

    今日锦囊 特征锦囊:如何对类别变量进行独热编码?...很多时候我们需要对类别变量进行独热编码,然后才可以作为入参给模型使用,独热的方式有很多种,这里介绍一个常用的方法 get_dummies吧,这个方法可以让类别变量按照枚举值生成N个(N为枚举值数量)新字段...,都是0-1的变量值。...那么接下来我们对字段Title进行独热编码,这里使用get_dummies,生成N个0-1新字段: # 我们对字段Title进行独热编码,这里使用get_dummies,生成N个0-1新字段 dummies_title...另外这种的话,我们是称为dummy encoding的,也就是哑变量编码,它把任意一个状态位去除,也就是说其中有一类变量值的哑变量表示为全0。更多的内容建议可以百度深入了解哈。

    1.6K30

    使用 CryptoJS 编写 JS 脚本,对密码变量进行预处理

    在 Pre-request Script Tab 下,使用 CryptoJS 编写 JS 脚本,对密码变量进行预处理 # Pre-request Script var password = "hu123456...("加密后的数据为:"+password_encry); //设置到环境变量中 //方式一:全局变量 // pm.globals.set("password_encry", password_encry...); //方式二:局部变量 pm.environment.set("password_encry", password_encry); 预处理设置变量有 2 种方式:全局变量、局部变量 需要注意的是,...如果设置到局部环境,我们需要先新建一个环境,并创建一个变量才能在 JS 脚本中引用 image.png 最后,在请求体中替换成上面设置的变量即可 image.png 最后 Postman 可以借助...CryptoJS 完成大部分数据的加密,但是它并不支持 RSA 算法 这里可以使用另外一个算法库「 forgeJS 」来进行 RSA 的加解密

    2.5K00

    mysql语句根据一个或多个列对结果集进行分组

    MySQL GROUP BY 语句 GROUP BY 语句根据一个或多个列对结果集进行分组。 在分组的列上我们可以使用 COUNT, SUM, AVG,等函数。...+----+--------+---------------------+--------+ 6 rows in set (0.00 sec) 接下来我们使用 GROUP BY 语句 将数据表按名字进行分组...| | 小王 | 2 | +--------+----------+ 3 rows in set (0.01 sec) 使用 WITH ROLLUP WITH ROLLUP 可以实现在分组统计数据基础上再进行相同的统计...例如我们将以上的数据表按名字进行分组,再统计每个人登录的次数: mysql> SELECT name, SUM(singin) as singin_count FROM employee_tbl GROUP...我们可以使用 coalesce 来设置一个可以取代 NUll 的名称,coalesce 语法: select coalesce(a,b,c); 参数说明:如果a==null,则选择b;如果b==null

    4.7K00

    按照A列进行分组并计算出B列每个分组的平均值,然后对B列内的每个元素减去分组平均值

    一、前言 前几天在Python星耀交流群有个叫【在下不才】的粉丝问了一个Pandas的问题,按照A列进行分组并计算出B列每个分组的平均值,然后对B列内的每个元素减去分组平均值,这里拿出来给大家分享下,一起学习...二、解决过程 这个看上去倒是不太难,但是实现的时候,总是一看就会,一用就废。这里给出【瑜亮老师】的三个解法,一起来看看吧!...888] df = pd.DataFrame({'lv': lv, 'num': num}) def demean(arr): return arr - arr.mean() # 按照"lv"列进行分组并计算出..."num"列每个分组的平均值,然后"num"列内的每个元素减去分组平均值 df["juncha"] = df.groupby("lv")["num"].transform(demean) print(df...这篇文章主要分享了Pandas处理相关知识,基于粉丝提出的按照A列进行分组并计算出B列每个分组的平均值,然后对B列内的每个元素减去分组平均值的问题,给出了3个行之有效的方法,帮助粉丝顺利解决了问题。

    4.7K20

    stata对包含协变量的模型进行缺失值多重插补分析

    在任何数据缺失之前,Y对X的散点图 接下来,我们将X的100个观察中的50个设置为缺失: gen xmiss =(_ n <= 50) 插补模型 在本文中,我们有两个变量Y和X,分析模型由Y上的Y的某种类型的回归组成...(意味着Y是因变量而X是协变量),我们希望生成这样的插补我们得到Y | X模型中参数的有效估计。...Y对X,其中缺少X值而忽略了Y. 清楚地显示了在X中忽略Y的缺失值的问题 - 在我们已经估算X的那些中,Y和X之间没有关联,实际上应该存在。...要继续我们的模拟数据集,我们首先丢弃之前生成的估算值,然后重新输入X,但这次包括Y作为插补模型中的协变量: mi impute reg x = y,add(1) Y对X,其中使用Y估算缺失的X值 多重插补中的变量选择...选择要包含在插补模型中的变量时的一般规则是,必须包括分析模型中涉及的所有变量,或者作为被估算的变量,或者作为插补模型中的协变量。

    3.1K20
    领券