首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

对分组的pandas数据帧中的行求和并返回NaN

在对分组的pandas数据帧中的行求和并返回NaN的情况下,可以通过使用groupby函数来实现。

首先,需要导入pandas库并加载数据帧。假设我们有一个名为df的数据帧,其中包含列group用于分组,以及其他需要求和的列。

代码语言:txt
复制
import pandas as pd

# 加载数据帧
df = pd.DataFrame({'group': ['A', 'A', 'B', 'B', 'C'],
                   'col1': [1, 2, 3, 4, 5],
                   'col2': [6, 7, 8, 9, 10]})

接下来,可以使用groupby函数按照group列进行分组,并使用sum函数求和。然而,在这种情况下,如果分组中的行数为0,那么求和的结果将返回NaN。可以通过定义一个自定义函数来解决这个问题,该函数在分组为空时返回NaN。

代码语言:txt
复制
def sum_with_nan(group):
    if len(group) == 0:
        return pd.Series({'col1': pd.NaT, 'col2': pd.NaT})
    else:
        return group[['col1', 'col2']].sum()

# 对分组的行求和并返回NaN
result = df.groupby('group').apply(sum_with_nan)

这样,result将是一个包含求和结果的数据帧,其中包括col1col2列的求和值。如果分组为空,则对应的求和结果为NaN。

上述方法可以用于对分组的pandas数据帧中的行求和并返回NaN。根据实际需求,可能需要对其他列进行求和或应用不同的函数。有关更多关于pandas的用法和函数的详细信息,可以参考pandas官方文档

页面内容是否对你有帮助?
有帮助
没帮助

相关·内容

掌握pandas时序数据分组运算

pandas分析处理时间序列数据时,经常需要对原始时间粒度下数据,按照不同时间粒度进行分组聚合运算,譬如基于每个交易日股票收盘价,计算每个月最低和最高收盘价。...图1 2 在pandas中进行时间分组聚合 在pandas根据具体任务场景不同,对时间序列进行分组聚合可通过以下两类方式实现: 2.1 利用resample()对时序数据进行分组聚合 resample...原始意思是「重采样」,可分为「上采样」与「下采样」,而我们通常情况下使用都是「下采样」,也就是从高频数据按照一定规则计算出更低频数据,就像我们一开始说每日数据按月汇总那样。...如果你熟悉pandasgroupby()分组运算,那么你就可以很快地理解resample()使用方式,它本质上就是在对时间序列数据进行“分组”,最基础参数为rule,用于设置按照何种方式进行重采样...它通过参数freq传入等价于resample()rule参数,利用参数key指定对应时间类型列名称,但是可以帮助我们创建分组规则后传入groupby(): # 分别对苹果与微软每月平均收盘价进行统计

3.4K10
  • Excel公式技巧84:混合数据数值求和

    如下图1所示,在列A存在文本、数值和空单元格。现在,想要求头3个出现数字之和,也就是说,求单元格A510000、A142000、A201000这3个数字之和。 ?...图1 我们一眼就可以看出这3个数字是该列首先出现前3个数字,但Excel不知道。如何使用公式来求得这3个数字之和呢?可以使用下面的数组公式实现。...SUM(OFFSET(A1,SMALL(IF(ISNUMBER(A2:A100),ROW(A2:A100)),{2})-1,)) 返回2000。...SUM(OFFSET(A1,SMALL(IF(ISNUMBER(A2:A100),ROW(A2:A100)),{3})-1,)) 返回1000。...其实,尽可能让数据符合Excel特点,合理布局,往往会给数据分析带来便利,而不必像上面那样,费尽心力编写冗长且难以理解数组公式了。

    3.1K50

    对比Excel,Python pandas删除数据框架

    标签:Python与Excel,pandas 对于Excel来说,删除是一项常见任务。本文将学习一些从数据框架删除技术。...准备数据框架 我们将使用前面系列中用过“用户.xlsx”来演示删除。 图1 注意上面代码index_col=0?如果我们将该参数留空,则索引将是基于0索引。...使用.drop()方法删除 如果要从数据框架删除第三(Harry Porter),pandas提供了一个方便方法.drop()来删除。...还要注意.drop()方法还返回结果数据框架。现在是有趣部分,让我们看看数据框架df,它并没有改变!这是因为我们忽略了参数inplace。...这次我们将从数据框架删除带有“Jean Grey”,并将结果赋值到新数据框架。 图6

    4.6K20

    pandasloc和iloc_pandas获取指定数据和列

    大家好,又见面了,我是你们朋友全栈君 实际操作我们经常需要寻找数据某行或者某列,这里介绍我在使用Pandas时用到两种方法:iloc和loc。...读取第二值 (2)读取第二值 (3)同时读取某行某列 (4)进行切片操作 ---- loc:通过、列名称或标签来索引 iloc:通过、列索引位置来寻找数据 首先,我们先创建一个...Dataframe,生成数据,用于下面的演示 import pandas as pd import numpy as np # 生成DataFrame data = pd.DataFrame(np.arange...,"D","E"]] 结果: 2.iloc方法 iloc方法是通过索引、列索引位置[index, columns]来寻找值 (1)读取第二值 # 读取第二值,与loc方法一样 data1...3, 2:4]第4、第5列取不到 发布者:全栈程序员栈长,转载请注明出处:https://javaforall.cn/178799.html原文链接:https://javaforall.cn

    8.8K21

    pythonpandasDataFrame和列操作使用方法示例

    pandasDataFrame时选取或列: import numpy as np import pandas as pd from pandas import Sereis, DataFrame...类型 data[['w','z']] #选择表格'w'、'z'列 data[0:2] #返回第1到第2所有,前闭后开,包括前不包括后 data[1:2] #返回第2,从0计,返回是单行...data.tail() #返回data后几行数据,默认为后五,需要后十则data.tail(10) data.iloc[-1] #选取DataFrame最后一返回是Series data.iloc...(1) #返回DataFrame第一 最近处理数据时发现当pd.read_csv()数据时有时候会有读取到未命名列,且该列也用不到,一般是索引列被换掉后导致,有强迫症看着难受,这时候dataframe.drop...github地址 到此这篇关于pythonpandasDataFrame和列操作使用方法示例文章就介绍到这了,更多相关pandas库DataFrame行列操作内容请搜索ZaLou.Cn以前文章或继续浏览下面的相关文章希望大家以后多多支持

    13.4K30

    数据分析】数据缺失影响模型效果?是时候需要missingno工具包来帮你了!

    如果丢失数据是由数据NaN表示,那么应该使用np.NaN将其转换为NaN,如下所示。...在本文中,我们将使用 pandas 来加载和存储我们数据使用 missingno 来可视化数据完整性。...这将返回一个表,其中包含有关数据汇总统计信息,例如平均值、最大值和最小值。在表顶部是一个名为counts。在下面的示例,我们可以看到数据每个特性都有不同计数。...我们可以使用另一种快速方法是: df.isna().sum() 这将返回数据包含了多少缺失值摘要。...isna()部分检测dataframe缺少值,并为dataframe每个元素返回一个布尔值。sum()部分对真值数目求和

    4.7K30

    精通 Pandas:1~5

    例如,将 CSV 文件读取到内存数据数据结构需要两代码,而在 Java/C/C++ 执行同一任务将需要更多代码非标准库调用,如下表。...默认行为是为未对齐序列结构生成索引集。 这是可取,因为信息可以保留而不是丢失。 在本书下一章,我们将处理 Pandas 缺失值。 数据 数据是一个二维标签数组。...可以将其视为序列结构字典,在该结构列和均进行索引,对于,则表示为“索引”,对于列,则表示为“列”。 它大小可变:可以插入和删除列。 序列/数据每个轴都有索引,无论是否默认。...如果我们数据具有多重索引,则可以使用groupby按层次结构不同级别分组计算一些有趣统计数据。...由于并非所有列都存在于两个数据,因此对于不属于交集数据每一,来自另一个数据列均为NaN

    19.1K10

    Pandas_Study02

    pandas 数据清洗 1. 去除 NaN 值 在Pandas各类数据Series和DataFrame里字段值为NaN为缺失数据,不代表0而是说没有赋值数据,类似于pythonNone值。...删除重复数据 对于数据重复数据,一般来讲没有什么意义,所以一般情况下都会进行删除操作。 duplicated() duplicated 方法可以返回重复数据分布情况,以布尔值显示。...columns=col) # 按操作,对数据求和 print(type(df.apply(lambda col: col.sum(), axis='rows'))) # 按列操作,对数据求和 print...实际上就是两个df 求交集还是选择 # 外连接就是集,内连接就是交集 3. merge() 方法 merge函数可以真正实现数据内外连接,且外连接还可以有左右连接特性。...size函数则是可以返回所有分组字节大小。count函数可以统计分组后各列数据项个数。get_group函数可以返回指定组数据信息。而discribe函数可以返回分组数据统计数据

    20310

    数据科学学习手札99)掌握pandas时序数据分组运算

    图1 2 在pandas中进行时间分组聚合   在pandas根据具体任务场景不同,对时间序列进行分组聚合可通过以下两类方式实现: 2.1 利用resample()对时序数据进行分组聚合 resample...原始意思是重采样,可分为上采样与下采样,而我们通常情况下使用都是下采样,也就是从高频数据按照一定规则计算出更低频数据,就像我们一开始说每日数据按月汇总那样。   ...如果你熟悉pandasgroupby()分组运算,那么你就可以很快地理解resample()使用方式,它本质上就是在对时间序列数据进行“分组”,最基础参数为rule,用于设置按照何种方式进行重采样...图2   可以看到,在上面的例子,我们index为日期时间类型DataFrame应用resample()方法,传入参数'M'是resample第一个位置上参数rule,用于确定时间窗口规则,...它通过参数freq传入等价于resample()rule参数,利用参数key指定对应时间类型列名称,但是可以帮助我们创建分组规则后传入groupby(): # 分别对苹果与微软每月平均收盘价进行统计

    1.8K20

    用过Excel,就会获取pandas数据框架值、和列

    在Python数据存储在计算机内存(即,用户不能直接看到),幸运pandas库提供了获取值、和列简单方法。 先准备一个数据框架,这样我们就有一些要处理东西了。...返回索引列表,在我们例子,它只是整数0、1、2、3。...df.columns 提供列(标题)名称列表。 df.shape 显示数据框架维度,在本例为45列。 图3 使用pandas获取列 有几种方法可以在pandas获取列。...语法如下: df.loc[,列] 其中,列是可选,如果留空,我们可以得到整行。由于Python使用基于0索引,因此df.loc[0]返回数据框架第一。...接着,.loc[[1,3]]返回数据框架第1和第4。 .loc[]方法 正如前面所述,.loc语法是df.loc[,列],需要提醒(索引)和列可能值是什么?

    19.1K60

    上手Pandas,带你玩转数据(1)-- 实例详解pandas数据结构

    文章目录 关于pandas pandas创始人pandas讲解 pandas热度 pandas对于数据分析 pandas数据结构简介 Series DataFrame pandas数据结构方法详解...pandas创始人pandas讲解 在pandas官网(Python Data Analysis Library)上,我们可以看到有一段pandas创始人Wes McKinneypandas讲解...1.对表格类型数据读取和输出速度非常快。(个人对比excel和pandas,的确pandas不会死机....)在他演示,我们可以看到读取489597,6列数据只要0.9s。...经常用在金融应用。 3.数据队列。可以把不同队列数据进行基本运算。 4.处理缺失数据。 5.分组运算。比如我们在前面泰坦尼克号groupby。 6.分级索引。...ndim 轴/阵列尺寸数量。 shape 返回表示DataFrame维度元组。 size NDFrame元素数目。 values NDFrameNumpy表示。 head() 返回前n

    6.7K30

    Pandas 秘籍:6~11

    具有至少一个True值任何行都包含一列最大值。 我们在步骤 5 所得布尔序列求和,以确定多少行包含最大值。 出乎意料是,多于列。 步骤 6 深入说明了为什么会发生这种情况。...对于正态分布,数据 99.7% 位于平均值三个标准差之内。 由于我们均值绝对偏差感兴趣,因此我们从所有标准化得分获取绝对值返回最大值。...更多 在此秘籍,我们为每个组返回作为序列。 通过返回数据,可以为每个组返回任意数量和列。...条纹第一和最后一索引存储为变量。 然后,这些索引用于选择条纹结束月份和日期。 我们使用数据返回结果。 我们标记命名索引以使最终结果更清晰。...() 另见 请参阅第 4 章,“选择数据子集”“同时选择数据和列”秘籍 Pandas unstack和pivot方法官方文档 在groupby聚合后解除堆叠 按单个列对数据进行分组并在单个列上执行聚合将返回简单易用结果

    34K10

    python数据分析——数据选择和运算

    它们能够帮助我们从海量数据中提取出有价值信息,通过适当运算处理,得出有指导意义结论。 数据选择,是指在原始数据集中筛选出符合特定条件数据子集。这通常涉及到对数据筛选、排序和分组等操作。...[0,1] 【例3】请使用Python如下二维数组进行提取,选择第一数据元素输出。...关键技术:使用’ id’键合并两个数据使用merge()其执行合并操作。..._NoValue'>)返回给定轴上数组元素乘积。程序代码 如下所示: 【例】请使用Python多个数组进行求和运算操作。...: 四、数据运算 pandas具有大量数据计算函数,比如求计数、求和、求平均值、求最大值、最小值、中位数、众数、方差、标准差等。

    17310

    Pandas教程】像写SQL一样用Pandas

    Pandas pandas支持数据源很多,包括csv,excel,以及读取数据库,当然读取数据库的话需要配合其他库,包括oracle,mysql,vertica,presto等等都是支持。...data[:3]:筛选前3; ? data[1:10:2]:筛选1到10奇数,最后一个数字2表示每隔2取数; ?...在Pandas我们可以使用pandas.merge()来完成连接操作。...自定义函数 Pandas内置很多常用方法,譬如求和,最大值等等,但很多时候还是满足不了需求,我们需要取调用自己方法,Pandas可以使用map()和apply()来调用自定义方法,需要注意下map...()和apply()区别: map():是pandas.Series()内置方法,也就是说只能用于单一列,返回数据是Series()格式; apply():可以用于单列或者多列,是整个DataFrame

    2.2K30

    数据科学 IPython 笔记本 7.1 Pandas

    Data Analysis) 序列(Series) 数据(DataFrame) 重索引 删除条目 索引,选择和过滤 算术和数据对齐 函数应用和映射 排序和排名 带有重复值轴索引 汇总和计算描述性统计量...每列可以是不同类型。 DataFrame同时具有索引和列索引,类似于Series字典。和列操作大致是对称实现。 索引DataFrame时返回列是底层数据视图,而不是副本。...对象相加会产生索引集,使不重叠索引为 NaN: np.random.seed(0) ser_6 = Series(np.random.randn(5), index...1.339386 f -1.072969 g 0.865408 dtype: float64 ''' 如果索引不相同,则将DataFrame对象相加,会产生和列索引集,使不重叠索引为...import Series, DataFrame import pandas as pd 读 将 CSV 文件数据读入DataFrame( TSV 使用sep='\t'): df_1 = pd.read_csv

    5.1K20

    Pandas图鉴(一):Pandas vs Numpy

    Pandas连接有所有熟悉 inner, left, right, 和 full outer 连接模式。 6.按列分组 数据分析另一个常见操作是按列分组。...下面是1和1亿结果: 从测试结果来看,似乎在每一个操作Pandas都比NumPy慢!而这并不意味着Pandas速度比NumPy慢! 当列数量增加时,没有什么变化。...这里values属性提供了底层NumPy数组访问,带来了3-30倍速度提升。 答案是否定Pandas 在这些基本操作上是如此缓慢,因为它正确地处理了缺失值。...在Pandas,做了大量工作来统一NaN在所有支持数据类型用法。根据定义(在CPU层面上强制执行),nan+任何东西结果都是nan。...所以在numpy中计算求和时: >>> np.sum([1, np.nan, 2]) nan 但使用pandas计算求和时: >>> pd.Series([1, np.nan, 2]).sum() 3.0

    32050
    领券