首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

数据分析的利器,Pandas 软件包详解与应用示例

4, np.nan, 4]} df_with_issues = pd.DataFrame(data) # 清洗数据:填充缺失值,删除重复项 df_clean = df_with_issues.fillna...然后使用fillna方法将所有缺失值替换为0,使用drop_duplicates方法删除重复的行。这样我们就得到了一个干净、整洁的数据集。...示例4:数据聚合和分析 Pandas的groupby方法是一个非常强大的工具,它允许我们对数据进行分组,并应用各种聚合函数,如求和、平均、最大值等。...Values': [10, 20, 15, 25, 30] } grouping_df = pd.DataFrame(data) # 按'Category'列进行聚合,计算每组的总和 grouped_sum...然后使用groupby方法按照'Category'列对数据进行分组,并对'Values'列求和。这样我们可以得到每个类别的总和。

10510

Pandas数据聚合:groupby与agg

引言 在数据分析中,数据聚合是一项非常重要的操作。Pandas库提供了强大的groupby和agg功能,使得我们能够轻松地对数据进行分组和聚合计算。...单列聚合 基本用法 对于单列数据的聚合,通常我们会先使用groupby方法指定分组依据,然后调用agg方法并传入具体的聚合函数。...常见的聚合函数包括sum()、mean()、count()、min()、max()等。 常见问题 重复值处理:当分组键存在重复值时,默认情况下会根据这些重复值创建新的分组。...如果希望去除重复项后再进行分组,可以在groupby之前使用drop_duplicates()。 缺失值处理:默认情况下,groupby会忽略含有NaN值的行。...检查拼写是否正确,并确认列确实存在于DataFrame中。 TypeError: 当尝试对非数值类型的数据应用某些聚合函数(如求和)时,可能会遇到类型错误。

41710
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    Pandas图鉴(一):Pandas vs Numpy

    1.Sorting 用Pandas按列排序更有可读性,你可以看到如下: 这里argsort(a[:,1])计算了使a的第二列以升序排序的排列方式,然后外部的a[...]相应地重新排列a的行。...2.按columns排序 如果我们需要使用权重列按价格列打破平局进行排序,那么对于NumPy来说却有些糟糕: 如果选择使用NumPy,我们首先按重量排序,然后再按价格应用第二次排序。...3.增加一列 从语法和架构上来说,用Pandas添加列要好得多: Pandas不需要像NumPy那样为整个数组重新分配内存;它只是为新的列添加一个引用,并更新一个列名的 registry。...Pandas连接有所有熟悉的 inner, left, right, 和 full outer 连接模式。 6.按列分组 数据分析中另一个常见的操作是按列分组。...这里的values属性提供了对底层NumPy数组的访问,并带来了3-30倍的速度提升。 答案是否定的。Pandas 在这些基本操作上是如此缓慢,因为它正确地处理了缺失值。

    35350

    Python~Pandas 小白避坑之常用笔记

    sep=',', skiprows=0, usecols=None) print(sheet1.head(5)) # 控制台打印前5条数据 三、重复值、缺失值、异常值处理、按行、按列剔除 1.重复值统计...= sheet1.duplicated(subset=['user_id']).sum() # 再次统计user_id列 重复值的数量 print("剔除后-user_id重复列数:", duplicated_num...) 2.缺失值统计、剔除: dropna()参数介绍: axis:0(对行数据进行剔除)、1(对列数据进行剔除),默认为0 how:any(行中有任意一个空值则剔除), all(行中全部为空值则剔除...Age”列存在数值为-1、0 和“-”的异常值,删除存在该情况的行数据;“Age”列存在空格和“岁”等异常字符,删除这些异常字符但须保留年龄数值 import pandas as pd sheet1...,续有常用的pandas函数会在这篇博客中持续更新。

    3.1K30

    用 Pandas 进行数据处理系列 二

    (keep=‘last’)删除先出现的重复值df[‘city’].replace(‘sh’, ‘shanghai’)数据替换 数据预处理 数据表合并 df_inner = pd.merge(df, df1...,然后将符合条件的数据提取出来pd.DataFrame(category.str[:3])提取前三个字符,并生成数据表 数据筛选 使用与、或、非三个条件配合大于、小于、等于对数据进行筛选,并进行计数和求和...= ['beijing', 'shanghai']) 对筛选后的结果按 pr 进行求和 df.query('city' == ['beijing', 'shanghai']).pr.sum() 数据汇总...df.groupby(‘city’).count()按 city 列分组后进行数据汇总df.groupby(‘city’)[‘id’].count()按 city 进行分组,然后汇总 id 列的数据df.groupby...([‘city’,‘size’])[‘id’].count()对两个字段进行分组汇总,然后进行计算df.groupby(‘city’)[‘pr’].agg([len, np.sum,np.mean])对

    8.2K30

    Pandas 秘籍:6~11

    另见 Pandas Index的官方文档 生成笛卡尔积 每当两个序列或数据帧与另一个序列或数据帧一起操作时,每个对象的索引(行索引和列索引)都首先对齐,然后再开始任何操作。...在我们的数据分析世界中,当许多输入的序列被汇总或组合为单个值输出时,就会发生汇总。 例如,对一列的所有值求和或求其最大值是应用于单个数据序列的常见聚合。 聚合仅获取许多值,然后将其转换为单个值。...在对 Pandas 进行分组时,通常使用具有离散重复值的列。...如果没有重复的值,则分组将毫无意义,因为每个组只有一行。 连续数字列通常具有很少的重复值,并且通常不用于形成组。...resample方法允许您按一段时间分组并分别汇总特定的列。 准备 在本秘籍中,我们将使用resample方法对一年中的每个季度进行分组,然后分别汇总犯罪和交通事故的数量。

    34K10

    Pandas库

    如何在Pandas中实现高效的数据清洗和预处理? 在Pandas中实现高效的数据清洗和预处理,可以通过以下步骤和方法来完成: 处理空值: 使用dropna()函数删除含有缺失值的行或列。...处理重复数据: 使用duplicated()方法检测重复行,并使用drop_duplicates()方法删除重复行。 异常值处理: 使用箱线图(Boxplot)识别并处理异常值。...数据转换: 使用 melt()函数将宽表转换为长表。 使用 pivot_table()函数创建交叉表格。 使用apply()函数对每一行或每一列应用自定义函数。...数据分组与聚合(Grouping and Aggregation) : 数据分组与聚合是数据分析中常用的技术,可以帮助我们对数据进行分组并计算聚合统计量(如求和、平均值等)。...例如,按列计算总和: total_age = df.aggregate (sum, axis=0) print(total_age) 使用groupby()函数对数据进行分组,然后应用聚合函数

    8410

    Pandas_Study02

    dropna() 删除NaN 值 可以通过 dropna 方法,默认按行扫描(操作),会将每一行有NaN 值的那一行删除,同时默认是对原对象的副本操作,不会对原对象产生影响,也可以通过inplace 指示是否直接在原对象上操作...复杂的 使用向前 或 向后 填充数据,依旧使用fillna 方法,所谓向前 是指 取出现NaN值的前一列或前一行的数据来填充NaN值,向后同理 # 在df 的e 这一列上操作,默认下按行操作,向前填充数据...: 2 * x) 对dataframe 使用apply # 对df 使用apply,都是按行或按列操作,不能保证对每一个元素进行操作 df = pd.DataFrame(val, index=idx,...columns=col) # 按行操作,对数据求和 print(type(df.apply(lambda col: col.sum(), axis='rows'))) # 按列操作,对数据求和 print...size函数则是可以返回所有分组的字节大小。count函数可以统计分组后各列数据项个数。get_group函数可以返回指定组的数据信息。而discribe函数可以返回分组后的数据的统计数据。

    20510

    python df 列替换_如何用Python做数据分析,没有比这篇文章更详细的了(图文详情)...

    数据表检查的另一个目的是了解数据的概况,例如整个数据表的大小,所占空间,数据格式,是否有空值和重复项和具体的数据内容。为后面的清洗和预处理做好准备。  ...类似与 Excel 中删除重复项后的结果。  ...“删除重复项”的功能,可以用来删除数据表中的重复值。...默认 Excel 会保留最先出现的数据,删除后面重复出现的数据。  删除重复项  Python 中使用 drop_duplicates 函数删除重复值。...Where 函数用来对数据进行判断和分组,下面的代码中我们对 price 列的值进行判断,将符合条件的分为一组,不符合条件的分为另一组,并使用 group 字段进行标记。

    4.5K00

    pandas每天一题-题目9:计算平均收入的多种方式

    一个订单会包含很多明细项,表中每个样本(每一行)表示一个明细项 order_id 列存在重复 quantity 是明细项数量 需求:计算订单平均收入?...按 order_id 分组即可 行3:由于收入需要计算,因此使用 apply 可以充分控制每一组汇总的细节 行4:参数 g 就是每个 order_id 的组,是一个表(DataFrame),这里是计算总收入...对 revenue 求和 但是 groupby + agg 出来的结果是一个表,如果直接求平均,会得到一个列(遍历所有列求平均)。...) .sum() .mean() ) 行2:直接计算收入,此时得到的是列(Series) 行3:对列分组,但是列里面没有分组依据(order_id),我们可以直接把数据传入。...注意这里不是列名(字符串),而是一列数据 行4:这里的 sum 是 groupby 后的操作,表达的是每一组的统计方式,我们需要求总订单收入 行5:上一步得到每个订单的收入,仍然是列(Series),直接求平均

    1.1K20

    Python 使用pandas 进行查询和统计详解

    前言 在使用 Pandas 进行数据分析时,我们需要经常进行查询和统计分析。...对整个 DataFrame 进行聚合操作: # 聚合函数:求和、均值、中位数、最大值、最小值 df.aggregate([sum, 'mean', 'median', max, min]) 对某列数据进行聚合操作...返回一个布尔型 DataFrame,表明各元素是否为缺失值 df.isnull() 删除缺失值所在的行或列: # 删除所有含有缺失值的行 df.dropna() # 删除所有含有缺失值的列 df.dropna...(axis=1) 用指定值填充缺失值: # 将缺失值使用 0 填充 df.fillna(0) 数据去重 对 DataFrame 去重: # 根据所有列值的重复性进行去重 df.drop_duplicates...() # 根据指定列值的重复性进行去重 df.drop_duplicates(subset=['name', 'age']) 对 Series 去重: # 对 'name' 列进行去重 df['name

    32910

    Pandas图鉴(三):DataFrames

    就像原来的join一样,on列与第一个DataFrame有关,而其他DataFrame是根据它们的索引来连接的。 插入和删除 由于DataFrame是一个列的集合,对行的操作比对列的操作更容易。...然而,另一个快速、通用的解决方案,甚至适用于重复的行名,就是使用索引而不是删除。...默认情况下,Pandas会对任何可远程求和的东西进行求和,所以必须缩小你的选择范围,如下图: 注意,当对单列求和时,会得到一个Series而不是一个DataFrame。...在上面的例子中,所有的值都是存在的,但它不是必须的: 对数值进行分组,然后对结果进行透视的做法非常普遍,以至于groupby和pivot已经被捆绑在一起,成为一个专门的函数(和一个相应的DataFrame...方法)pivot_table: 没有列参数,它的行为类似于groupby; 当没有重复的行来分组时,它的工作方式就像透视一样; 否则,它就进行分组和透视。

    44420

    使用R或者Python编程语言完成Excel的基础操作

    熟悉界面:打开Excel并熟悉其界面,包括菜单栏、工具栏、功能区等。 掌握基本操作:学习如何插入、删除行/列,重命名工作表,以及基本的数据输入。...增加数据 插入行或列:右键点击行号或列标,选择“插入”。 输入数据:直接在单元格中输入数据。 2. 删除数据 删除行或列:右键点击行号或列标,选择“删除”。...、类型转换、增加列、分组求和、排序和查看结果。...x: int(x[-2]), reverse=True) 分组求和 分组求和在不使用Pandas的情况下会相对复杂,需要手动实现分组逻辑: # 假设我们要按 'Store' 分组求 'Sales'...在实际工作中,直接使用Pandas进行数据处理是非常常见的做法,因为Pandas提供了对大型数据集进行高效操作的能力,以及丰富的数据分析功能。

    23810

    pandas用法-全网最详细教程

    () 8 、删除先出现的重复值: df['city'].drop_duplicates(keep='last') 9、数据替换: df['city'].replace('sh', 'shanghai')...由此产生的分层索引中的级的名称。 verify_integrity︰ 布尔值、 默认 False。检查是否新的串联的轴包含重复项。这可以是相对于实际数据串联非常昂贵。...列显示high,否则显示low: df_inner['group'] = np.where(df_inner['price'] > 3000,'high','low') 6、对复合多个条件的数据进行分组标记...7、适应iloc按位置单独提起数据 df_inner.iloc[[0,2,5],[4,5]] #提取第0、2、5行,4、5列 8、使用ix按索引标签和位置混合提取数据 df_inner.ix[:'2013..."]').price.sum() 七、数据汇总 主要函数是groupby和pivote_table 1、对所有的列进行计数汇总 df_inner.groupby('city').count() 2、按城市对

    7.3K31

    Pandas 秘籍:1~5

    通常,这些新列将从数据集中已有的先前列创建。 Pandas 有几种不同的方法可以向数据帧添加新列。 准备 在此秘籍中,我们通过使用赋值在影片数据集中创建新列,然后使用drop方法删除列。...步骤 4 使用大于或等于比较运算符返回布尔序列,然后在步骤 5 中使用all方法对其进行求值,以检查每个单个值是否为True。 drop方法接受要删除的行或列的名称。 默认情况下是按索引名称删除行。...如果您尝试使用相等运算符对缺失值进行计数并对布尔列求和,则每个数字将得到零: >>> (college_ugds_ == np.nan).sum() UGDS_WHITE 0 UGDS_BLACK...在此示例中,每年仅返回一行。 正如我们在最后一步中按年份和得分排序一样,我们获得的年度最高评分电影。 更多 可以按升序对一列进行排序,而同时按降序对另一列进行排序。...要做到这一点,我们将选择这两列,然后删除任何其中一部电影缺少值的行。

    37.6K10

    Python数据分析实战基础 | 清洗常用4板斧

    02 删——删空去重 2.1 删空 在一些场景,源数据的缺失(空值)对于分析来说是干扰项,需要系统的删除。...要把重复数据删掉,一行代码就搞定: drop_duplicates方法去重默认会删掉完全重复的行(每个值都一样的行),如果我们要删除指定列重复的数据,可以通过指定subset参数来实现,假如我们有个奇葩想法...3.2 排序 很多情况下,我们都需要通过排序来观察数据规律,以及快速筛选出TOP N的数据项。对于案例数据,我们怎么样按交易金额进行排序并筛选出TOP3的渠道呢?...(常用的计算方法包括sum、max、min、mean、std): 后面加上了sum,代表我们先按照流量级别进行分组,再对分组内的字段求和。...由于没有指定求和的列,所以是对所有数值型字段进行了求和。

    2.1K21
    领券