一、前言 前几天在Python钻石流群有个叫【周凡】的粉丝问了Python列表的问题,如下图所示。 下图是他的原始内容。...= 0 else 0 list2.append(l) print(list2) 本质上来说的话,这个方法和【瑜亮老师】的一模一样,只不过他这里使用了一行代码,将判断简化了。...: pre_num = num result[num] = num - pre_num print(result) print(result) 这个方法就是判断当前的数据和之前的...这篇文章主要盘点一个Python列表统计小题目,文中针对该问题给出了具体的解析和代码演示,一共5个方法,帮助粉丝顺利解决了问题。如果你还有其他解法,欢迎私信我。...最后感谢粉丝【周凡】提问,感谢【瑜亮老师】、【绅】、【逸总】、【月神】、【布达佩斯的永恒】大佬给出的代码和具体解析,感谢【dcpeng】、【懒人在思考】、【王子】、【猫药师Kelly】、【冯诚】等人参与学习交流
记住:像蜡烛一样融化(Melt)就是将凝固的复合物体变成几个更小的单个元素(蜡滴)。融合二维DataFrame可以解压缩其固化的结构并将其片段记录为列表中的各个条目。...要记住:Explode某物会释放其所有内部内容-Explode列表会分隔其元素。 Stack 堆叠采用任意大小的DataFrame,并将列“堆叠”为现有索引的子索引。...堆叠中的参数是其级别。在列表索引中,索引为-1将返回最后一个元素。这与水平相同。级别-1表示将取消堆叠最后一个索引级别(最右边的一个)。...默认情况下,合并功能执行内部联接:如果每个DataFrame的键名均未列在另一个键中,则该键不包含在合并的DataFrame中。...串联是将附加元素附加到现有主体上,而不是添加新信息(就像逐列联接一样)。由于每个索引/行都是一个单独的项目,因此串联将其他项目添加到DataFrame中,这可以看作是行的列表。
,Pandas 为 Series 提供了 str 属性,通过它可以方便的对每个元素进行操作。...Series中的每个字符串 slice_replace() 用传递的值替换每个字符串中的切片 count() 计数模式的发生 startswith() 相当于每个元素的str.startswith(pat...) endswith() 相当于每个元素的str.endswith(pat) findall() 计算每个字符串的所有模式/正则表达式的列表 match() 在每个元素上调用re.match,返回匹配的组作为列表...user_info.age.apply(lambda x: "yes" if x >= 30 else "no") applymap 方法针对于 DataFrame,它作用于 DataFrame 中的每个元素...(c)将(b)中的ID列结果拆分为原列表相应的5列,并使用equals检验是否一致。
# 5、字符串切割 y.split(" ") # 返回的是列表形式;里面就是切割后的每个元素 ['hello', 'python!', 'hello', 'pandas!']...等自然数 # 使用expand参数,将返回的列表进行展开 df["Language"].str.split(" ", expand=True) .dataframe tbody tr th...: Language, dtype: object str.replace:正则表达式中的替换功能 # 将字母J和Python整个字符串替换成?...)或者指定字符 str.lower:所有字符串的字母转成小写 str.uppper:所有字符串的字母转成大写 str.find:查找字符串中指定的子字符串第一次出现的位置 str.rfind:查找字符串中指定的子字符串最后一次出现的位置...str.index:查找指定字符在字符串中第一次出现的位置(索引号) str.rindex:查找指定字符在字符串中最后一次出现的位置(索引号) str.capitalize:将字符串中的单词的第一个字母变成大写
一、向量化操作的概述 对于文本数据的处理(清洗),是现实工作中的数据时不可或缺的功能,在这一节中,我们将介绍Pandas的字符串操作。...三、向量化的正则表达式 Pandas的字符串方法根据Python标准库的re模块实现了正则表达式,下面将介绍Pandas的str属性内置的正则表达式相关方法 方法 说明 match() 对每个元素调用re.match...将拆分的字符串展开为单独的列。 如果 True ,返回 DataFrame/MultiIndex 扩展维度。 如果 False ,则返回包含字符串列表的系列/索引。...() 按照分隔符提取每个元素的dummy变量,转换为one-hot编码的DataFrame 1、wrap() 处理长文本数据(段落或消息)时,Pandas str.wrap()是一种重要的方法。...提供了一种向系列中的每个字符串元素添加填充(空格或其他字符)的方法。
通过它可以方便的对每个元素进行操作。...James [Shen, Zhen] Andy NaN Alice [, ] Name: city, dtype: object 分割列表中的元素可以使用...Series中的每个字符串 slice_replace() 用传递的值替换每个字符串中的切片 count() 计数模式的发生 startswith() 相当于每个元素的str.startswith(pat...) endswith() 相当于每个元素的str.endswith(pat) findall() 计算每个字符串的所有模式/正则表达式的列表 match() 在每个元素上调用re.match,返回匹配的组作为列表...extract() 在每个元素上调用re.search,为每个元素返回一行DataFrame,为每个正则表达式捕获组返回一列 extractall() 在每个元素上调用re.findall,为每个匹配返回一行
对于新手来说,这一过程可能会显得有些复杂,但通过一些简单的步骤和示例代码,我们可以轻松地将Python列表转换为Excel表格的第一列。...接着,我们遍历Python列表,并将每个元素写入到Excel的第一列中。最后,我们保存了Excel文件。...我们可以直接将Python列表转换为pandas的DataFrame对象,然后使用to_excel方法将其写入到Excel文件中。...'], ['王五', 28, '男']] # 将第一个子列表写入到Excel的第一列中 first_column_data = data[0] df = pd.DataFrame(first_column_data...最后,我们将二维列表转换为DataFrame对象,并将其写入到Excel文件中。 五、结论 本文详细介绍了如何使用openpyxl和pandas库将Python列表转换为Excel表格的第一列。
Pandas中可以借助groupby操作对Dataframe分组操作,本文介绍groupby的基本原理及对应的agg、transform和apply方法与操作。....png] 转换成列表的形式后,可以看到,列表由三个元组组成,每个元组中: 第一个元素是组别(这里是按照company进行分组,所以最后分为了A,B,C) 第二个元素的是对应组别下的DataFrame...总结一下,groupby将原有的DataFrame按照指定的字段(这里是company),划分为若干个分组DataFrame。...groupby之后可以进行下一步操作,注意,在groupby之后的一系列操作(如agg、apply等),均是基于子DataFrame的操作。 下面我们一起看看groupby之后的常见操作。...对于groupby后的apply,实际上是以分组后的子DataFrame作为参数传入指定函数的,基本操作单位是DataFrame,而之前介绍的apply的基本操作单位是Series。
所以这些是 Python NumPy 数组相对于列表的主要优势,下面我们将在下面的例子中一一实践证明以上几点 import numpy as np import time import sys S=...)]) print(a.itemsize) Output: 4 可以看出,每个元素在上面的数组中占据4个字节 dtype 用于查看元素的数据类型 import numpy as np a = np.array...]) Output: [3 5] 这里冒号代表所有行,包括零, 现在要获取第二个元素,我们将从两行中调用索引 2,分别为我们获取值 3 和 5 接下来,为了消除混淆,假设我们还有一行,我们只想打印数组中的前两个索引中的元素...我们可以合并两个 DataFrame 以形成单个 DataFrame 让我们实际实现一下,首先我们将创建三个 DataFrame,其中包含一些键值对,然后将这些 DataFrame 合并在一起 import...现在,bin 指的是划分为一系列区间的值范围,通常创建的 bin 大小相同,在下面的代码中,我以 10 的间隔创建了 bin,这就说明第一个 bin 包含从 0 到 9 的元素,然后是 10 到 19,
Pandas简介 Pandas把结构化数据分为了三类: Series,可以理解为一个一维的数组,只是index可以自己改动。 DataFrame,一个类似于表格的数据类型的2维结构化数据。...Panel,3维的结构化数据。 Dataframe实例: ? 对于DataFrame,有一些固有属性: ?...SQL VS Pandas SELECT(数据选择) 在SQL中,选择是使用逗号分隔的列列表(或*来选择所有列): ? 在Pandas中,选择不但可根据列名称选取,还可以根据列所在的位置选取。...及列label,快速定位DataFrame的元素; iat,与at类似,不同的是根据position来定位的; ?...这是因为count()将函数应用于每个列,返回每个列中的非空记录的数量。具体如下: ? 还可以同时应用多个函数。例如,假设我们想要查看每个星期中每天的小费金额有什么不同。 SQL: ?
创建二维数组时,我们传入一个由多个列表组成的列表,每个内部列表代表二维数组的一行。...元素级运算:numpy的强大之处在于它能快速地对数组中的每个元素进行运算。...3 的元素之前(不包括第四个元素),将这部分元素组成一个新的子数组赋值给sub_arr变量,最后打印这个子数组。...比如,要获取数组arr从第二个元素到第四个元素(不包括第四个元素)的子数组,可以这样写: Pandas 包的导入与应用 导入 Pandas pandas是 Python 中用于数据处理和分析的核心库...plt.bar(categories, values)函数根据这两个列表绘制柱状图,每个类别对应一个柱子,柱子的高度由values中的数值决定。
它的名字来源是由“ Panel data”(面板数据,一个计量经济学名词)两个单词拼成的。简单地说,你可以把 Pandas 看作是 Python 版的 Excel。 ?...下面这个例子里,将创建一个 Series 对象,并用字符串对数字列表进行索引: ? 注意:请记住, index 参数是可省略的,你可以选择不输入这个参数。...同时你可以用 .loc[] 来指定具体的行列范围,并生成一个子数据表,就像在 NumPy里做的一样。比如,提取 'c' 行中 'Name’ 列的内容,可以如下操作: ?...下面这个例子,我们从元组中创建多级索引: ? 最后这个 list(zip()) 的嵌套函数,把上面两个列表合并成了一个每个元素都是元组的列表。...上面的结果中,Sales 列就变成每个公司的分组平均数了。 计数 用 .count() 方法,能对 DataFrame 中的某个元素出现的次数进行计数。 ?
简单归纳来看,主要可分为以下几个方面: 1 数据清洗 数据处理中的清洗工作主要包括对空值、重复值和异常值的处理: 空值 判断空值,isna或isnull,二者等价,用于判断一个series或dataframe...,可通过axis参数设置是按行删除还是按列删除 替换,replace,非常强大的功能,对series或dataframe中每个元素执行按条件替换操作,还可开启正则表达式功能 2 数值计算 由于pandas...是在numpy的基础上实现的,所以numpy的常用数值计算操作在pandas中也适用: 通函数ufunc,即可以像操作标量一样对series或dataframe中的所有元素执行同一操作,这与numpy...尤为强大的是,除了常用的字符串操作方法,str属性接口中还集成了正则表达式的大部分功能,这使得pandas在处理字符串列时,兼具高效和强力。例如如下代码可用于统计每个句子中单词的个数 ?...applymap,仅适用于dataframe对象,且是对dataframe中的每个元素执行函数操作,从这个角度讲,与replace类似,applymap可看作是dataframe对象的通函数。 ?
问题描述在pandas的DataFrame格式数据中,每一列可以是不同的数据类型,如数值型、字符串型、日期型等。而ndarray格式数据需要每个元素都是相同类型的,通常为数值型。...= series_a + 1上述代码中,我们创建了一个新的变量series_a,将列A转换为ndarray并使用pd.Series()将其转换为pandas的Series数据格式。...通过将DataFrame的某一列转换为ndarray,并使用pd.Series()将其转换为pandas的Series数据格式,可以避免格式不一致的错误。...然后,我们可以直接对这两个ndarray进行运算,得到每个产品的销售总额。最后,将运算结果添加到DataFrame中的Sales Total列。...同质性:ndarray中存储的数据类型必须是相同的,通常是数值型数据。高效性:ndarray底层采用连续的内存块存储数据,并且对于数组中的每个元素,采用相同大小的内存空间。
索引(Index): 索引是用于标识每个元素的标签,可以是整数、字符串、日期等类型的数据。索引提供了对 Series 中数据的标签化访问方式。...了解完这些,接下来,让我们一起探索 Pandas 中那些不可或缺的常用函数,掌握数据分析的关键技能。①.map() 函数用于根据传入的字典或函数,对 Series 中的每个元素进行映射或转换。...具体来说,map()函数可以接受一个字典或一个函数作为参数,然后根据这个字典或函数对 Series 中的每个元素进行映射或转换,生成一个新的 Series,并返回该 Series。...如果传入的是一个字典,则 map() 函数将会使用字典中键对应的值来替换 Series 中的元素。如果传入的是一个函数,则 map() 函数将会使用该函数对 Series 中的每个元素进行转换。...pandas as pd# 创建一个 Seriess = pd.Series([10, 20, 30, 40, 50])# 使用 pd.cut() 函数将数据划分为三个区间bins = [0, 30,
在本节中,我们将介绍一些 Pandas 字符串操作,然后使用它们来部分清理从互联网收集的,非常混乱的食谱数据集。...(),返回布尔值 extract() 在每个元素上调用re.match(),返回作为字符串的每个分组 findall() 在每个元素上调用re.findall() replace() 将模式串的每次出现替换为一些其它字符串...使用传递的分隔符连接每个元素中的字符串 get_dummies() 将虚拟变量提取为数据帧 向量化的项目访问和切片 特别是get()和slice()操作,可以在每个数组中执行向量化元素访问。...虽然概念上很简单,但由于数据的异质性,任务变得复杂:例如,从每一行中提取干净的成分列表并不容易。 所以我们用一些手段:我们先从一系列常见成分开始,然后仅仅搜索它们是否在每个配方的成分列表中。...DataFrame,指示该成分是否出现在列表中: import re spice_df = pd.DataFrame(dict((spice, recipes.ingredients.str.contains
这是pandas最基础的开篇知识点使用可迭代对象构造DataFrame,列表的每个元素都是整个DataFrame对应的一行,而这个元素内部迭代出来的每个元素将构成DataFrame的某一列。...然后再看看这个explode函数,它是pandas 0.25版本才出现的函数,只有一个参数可以传入列名,然后该函数就可以把该列的列表每个元素扩展到多行上。...例如:product(A, B) 中的元素A和B将共同构成可迭代元素[A, B]作为iterables传入和 ((x,y) for x in A for y in B) 返回结果一样。...---- 列表的extend方法是将可迭代对象的每个元素都添加到列表中,而append方法只能添加单个元素。...列表分列的2种方法 列表分列的思路:Pandas的Series对象调用apply方法单个元素返回的结果是Series时,这个Series的每个数据会作为Datafrem的每一列,索引会作为列名。
具体地,代码中的列表推导式 [c for b in a for c in b] 用于遍历二维列表 a 中的每个子列表 b,然后遍历子列表 b 中的每个元素 c,并将其添加到列表 d 中。...这种列表推导式的写法可以简化列表的操作,将多维列表展开为一维列表,便于处理和使用其中的元素。 第三行的C是什么意思?¶ 在第三行的列表推导式中,c 是一个临时变量,用于表示每个子列表 b 中的元素。...具体来说,第三行的列表推导式 [c for b in a for c in b] 可以解读为: 对于列表 a 中的每个子列表 b, 对于子列表 b 中的每个元素 c, 将元素 c 添加到列表中。...在代码执行过程中,列表推导式会根据循环的嵌套顺序,首先遍历 a 的子列表 b,然后遍历子列表 b 的元素 c,并将每个 c 添加到最终的列表 d 中。...部分,将 'v'*4 中的每个元素与 range(1,5) 中对应位置上的元素进行组合。最后,通过 str(x) + str(y) 将每对元素转换为字符串并拼接起来,生成最终的列表 s1。
本文将介绍如何使用Selenium Python爬取动态表格中的复杂元素和交互操作。...Selenium可以结合pandas库,将爬取的数据转换为DataFrame格式,方便后续的分析和处理。...然后,将这个字典追加到data列表中,形成一个二维数据结构,其中每个元素都是一个字典代表一行数据。关闭浏览器对象:在数据爬取完成后,通过driver.close()关闭浏览器对象,释放资源。...将列表转换为DataFrame对象:使用pd.DataFrame(data)将data列表转换为一个pandas的DataFrame对象df,其中每个字典代表DataFrame的一行。...打印DataFrame对象:通过print(df)将DataFrame对象打印出来,展示网页中爬取到的数据。
2.1 map() 类似Python内建的map()方法,pandas中的map()方法将函数、字典索引或是一些需要接受单个输入值的特别的对象与对应的单个列的每一个元素建立联系并串行得到结果。...譬如这里我们编写一个使用到多列数据的函数用于拼成对于每一行描述性的话,并在apply()用lambda函数传递多个值进编写好的函数中(当调用DataFrame.apply()时,apply()在串行过程中实际处理的是每一行数据...不同的是applymap()将传入的函数等作用于整个数据框中每一个位置的元素,因此其返回结果的形状与原数据框一致。...可以看到每一个结果都是一个二元组,元组的第一个元素是对应这个分组结果的分组组合方式,第二个元素是分组出的子集数据框,而对于DataFrame.groupby()得到的结果。...要注意的是,这里的apply传入的对象是每个分组之后的子数据框,所以下面的自编函数中直接接收的df参数即为每个分组的子数据框: import numpy as np def find_most_name