一、前言 前几天在Python白银交流群【上海新年人】问了一个Pandas数据提取的问题,问题如下:譬如我要查找某列中最大的值,如何做? 二、实现过程 这里他自己给了一个办法,而且顺便增加了难度。...print(df[df.点击 == df['点击'].max()]),方法确实是可以行得通的,也能顺利地解决自己的问题。...顺利地解决了粉丝的问题。 三、总结 大家好,我是皮皮。这篇文章主要盘点了一个Pandas数据提取的问题,文中针对该问题,给出了具体的解析和代码实现,帮助粉丝顺利解决了问题。...最后感谢粉丝【上海新年人】提出的问题,感谢【瑜亮老师】给出的思路,感谢【莫生气】、【添砖java】、【冯诚】等人参与学习交流。
解答这道题的关键是要找到数组中的最小值,由于最小值不一定在开头,如果它在数组中间的话,那么它一定具备这样的性质,假设第i个元素是最小值,那么有A[i-1]>A[i]不是,那么最小值在数组中间某个位置,根据定义,最小值右边的元素都会小于等于A[n-1],而左边的元素都会大于A[n-1],根据这个性质,我们可以通过折半查找来获得最小值。...如果A[m] > A[n-1],那么我们可以确定最小值在m的右边,于是在m 和 end之间做折半查找。...如果A[m] 值,如果不是,那么最小值在m的左边,于是我们在begin 和 m 之间折半查找,如此我们可以快速定位最小值点。...这种查找方法使得我们能够在lg(n)时间内查找到最小值。 当找到最小值后,我们就很容易查找第k小的元素,如果k比最小值之后的元素个数小的,那么我们可以在从最小值开始的数组部分查找第k小的元素。
在Excel中我们可以直接使用Vlookup或者Index和Match组合匹配到,然后下拉即可 VlookUp(A2,E1:F4,2,0)*RoundUp(B2,0) Index(F:F,Match(A2...这里我们可以用另外种方式来进行,相对于增加辅助列的话更灵活些。 ?...[单位价格kg]中最大的一个值,而不是最后的一个值。...我们要取的价格应该是A客户发深圳在发货日2019/2/5之前最后的一次报价,应该是7,而不是8。 ? 那如何才能返回最后一条信息呢?通过3个条件的筛选我们可以得出这个表。 ?...这里我们需要查找的是2个值,一个是首重,一个是续重(单位价格),然后再去求运费。我们通过var变量来写,相对能够更清楚些。最终我们可以在添加列里面写上如下公式。
我们给出了基于在多个工作表给定列中匹配单个条件来返回值的解决方案。本文使用与之相同的示例,但是将匹配多个条件,并提供两个解决方案:一个是使用辅助列,另一个不使用辅助列。 下面是3个示例工作表: ?...图3:工作表Sheet3 示例要求从这3个工作表中从左至右查找,返回Colour列中为“Red”且“Year”列为“2012”对应的Amount列中的值,如下图4所示的第7行和第11行。 ?...图4:主工作表Master 解决方案1:使用辅助列 可以适当修改上篇文章中给出的公式,使其可以处理这里的情形。首先在每个工作表数据区域的左侧插入一个辅助列,该列中的数据为连接要查找的两个列中数据。...16:使用VLOOKUP函数在多个工作表中查找相匹配的值(1)》。...D1:D10 传递到INDEX函数中作为其参数array的值: =INDEX(Sheet3!
在某个工作表单元格区域中查找值时,我们通常都会使用VLOOKUP函数。但是,如果在多个工作表中查找值并返回第一个相匹配的值时,可以使用VLOOKUP函数吗?本文将讲解这个技术。...最简单的解决方案是在每个相关的工作表中使用辅助列,即首先将相关的单元格值连接并放置在辅助列中。然而,有时候我们可能不能在工作表中使用辅助列,特别是要求在被查找的表左侧插入列时。...图3:工作表Sheet3 示例要求从这3个工作表中从左至右查找,返回Colour列中为“Red”对应的Amount列中的值,如下图4所示。 ?...,我们首先需要确定在哪个工作表中进行查找,因此我们使用的函数应该能够操作三维单元格区域,而COUNTIF函数就可以。...B:B"}),$A3) INDIRECT函数指令Excel将这个文本字符串数组中的元素转换为单元格引用,然后传递给COUNTIF函数,同时单元格A3中的值作为其条件参数,这样上述公式转换成: {0,1,3
在处理数据的时候,有可能会把行和列交换的情况。...numpy中的nan和inf 1) nan:在之前0/0会显示nan,其实nan表示不是一个数字 inf:inf表示正无穷,-inf表示负无穷,当数据不对的时候(比如1/0)就会出现这个值 2) 两个nan...是不相等的 np.nan == np.nan # 会返回False 3) # 计算数组中nan的个数 # 假如a中有nan值,我们可以找出这个值的个数 # count_nonzero统计非0数值的个数,...# 循环行 for i in range(t.shape[0]): # 获取当前行 temp_col = t[i,:] # 计算nan的数量 num_nan = np.count_nonzero(np.isnan...需要循环查看。 查看某些索引: attr.index[:1] 查看值 attr.values。 切片,遍历都是由可以的。 很多功能和numpy中大部分都相同。这里就不在一一阐述。
例如,可以查到张无忌最近是2019年9月9日值班,因此下一天的值班就不会安排张无忌了。现在就是要求给出张无忌后,获得他最近值班的日期2019年9月9日,对于其他的员工也是这样。 ?...A2:A10中的值,如果相同返回TRUE,不相同则返回FALSE,得到一个由TRUE和FALSE组成的数组,然后与A2:A10所在的行号组成的数组相乘,得到一个由行号和0组成的数组,MAX函数获取这个数组的最大值...,也就是与单元格D2中的值相同的数据在A2:A10中的最后一个位置,减去1是因为查找的是B2:B10中的值,是从第2行开始的,得到要查找的值在B2:B10中的位置,然后INDEX函数获取相应的值。...图2 使用LOOKUP函数 公式如下: =LOOKUP(2,1/($A$2:$A$10=$D$2),$B$2:$B$10) 公式中,比较A2:A10与D2中的值,相等返回TRUE,不相等返回FALSE...组成的数组,由于这个数组中找不到2,LOOKUP函数在数组中一直查找,直至最后一个比2小的最大值,也就是数组中的最后一个1,返回B2:B10中对应的值,也就是要查找的数据在列表中最后的值。
对于这个题目,我们曾经讨论过当数组元素全是整数时的情况,要找到满足条件的配对(i,j),我们让i从0开始,然后计算m = k - A[i],接着在(i+1, n)这部分元素中,使用折半查找,看看有没有元素正好等于...m,如果在(i+1,n)中存在下标j,满足A[j] == m 那么我们就可以直接返回配对(i,j),这种做法在数组元素全是正数,全是负数,以及是绝对值排序时都成立,只是在绝对值排序的数组中,进行二分查找时...因此在查找满足条件的元素配对时,我们先看看前两种情况是否能查找到满足条件的元素,如果不行,那么我们再依据第三种情况去查找,无论是否存在满足条件的元素配对,我们算法的时间复杂度都是O(n)。..." and " + this.sortedArray[this.indexJ]); } } } 类FindPairInAbsoluteSortedArray用于在绝对值排序的数组中查找满足条件的元素配对...,它先根据两元素都是正数的情况下查找,然后再根据两元素都是负数的情况下查找,如果这两种情况都找不到,再尝试两元素一正一负的情况下查找,如果三种情况都找不到满足条件的元素,那么这样的元素在数组中不存在。
我们将说明一些有用的NumPy对象来作为说明pandas的方式。 对于数据分析任务,我们经常需要将不同的数据类型组合在一起。...下表比较在SAS中发现的pandas组件。 ? 第6章,理解索引中详细地介绍DataFrame和Series索引。...Pandas使用两种设计来表示缺失数据,NaN(非数值)和Python None对象。 下面的单元格使用Python None对象代表数组中的缺失值。相应地,Python推断出数组的数据类型是对象。...并不是所有使用NaN的算数运算的结果是NaN。 ? 对比上面单元格中的Python程序,使用SAS计算数组元素的平均值如下。SAS排除缺失值,并且利用剩余数组元素来计算平均值。 ?...fillna()方法查找,然后用此计算值替换所有出现的NaN。 ? ? 相应的SAS程序如下所示。
一、向量化操作的概述 对于文本数据的处理(清洗),是现实工作中的数据时不可或缺的功能,在这一节中,我们将介绍Pandas的字符串操作。...那么,有没有办法,不用循环就能同时处理多个字符串呢,Pandas的向量化操作(vectorized string operation)就提供了这样的方法。...第一次出现的位置 rfind() 等价于str.rfind,查找字符串中指定的子字符串sub最后一次出现的位置 index() 等价于str.index,查找字符串中第一次出现的子字符串的位置 rindex...str.repeat()方法用于在传递的系列本身的相同位置重复字符串值。...如果na_rep 为None,并且others 不是None,则在任何列(连接之前)中包含缺失值的行将在结果中具有缺失值。
通过 for 循环遍历可迭代的列表值。 自定义代码实现了 Z-Score 计算公式。 通过Pandas的 duplicated() 判断重复数据记录。...01 缺失值处理 在缺失值的处理上,主要配合使用 sklearn.preprocessing 中的Imputer类、Pandas和Numpy。...其中由于Pandas对于数据探索、分析和探查的支持较为良好,因此围绕Pandas的缺失值处理较为常用。 1. 导入库 该代码示例中用到Pandas、Numpy和sklearn。...() 方法来查找含有至少1个或全部缺失值的列,其中 any() 方法用来返回指定轴中的任何元素为 True,而 all() 方法用来返回指定轴的所有元素都为 True。...在示例中, nan_result_pd4、nan_result_pd5、nan_result_pd6 分别使用0、不同的值、平均数替换缺失值。
# pandas 数据预处理 基于numpy # 读取csv文件(逗号隔开的文件) import pandas,os,numpy as np path = r"D:\desktop\Workspace\..., inplace =True表示在源DataFrame上修改,否则生成新的Frame, # 默认排序从小到大ascending=True,Flase 为从大到小 # 对于列中某些为空的 显示时为...即可获取缺失值的个数 """ 对于一些加减乘除的操作 ,注意过滤NaN 否则计算机结果为NaN student_teacher["xxx"][isNullOrNot==False] 过滤缺失值 student_teacher...["xxx"].mean() 自带的直接过滤 为空的是True 0 NaN ... """ # 聚合函数,分组后求平均:基本思路是循环 # 按照index分组,求values的平均值 # values...0删除行中为空的 若为行 使用subnet = [1,2,3] # student_teacher.loc[83,"序号"] # 直接定位到值 # student_teacher.sort_index
我创建了这个pandas函数的备忘单。这不是一个全面的列表,但包含了我在构建机器学习模型中最常用的函数。让我们开始吧!...选择 在训练机器学习模型时,我们需要将列中的值放入X和y变量中。...NaN(非数字的首字母缩写)是一个特殊的浮点值,所有使用标准IEEE浮点表示的系统都可以识别它 pandas将NaN看作是可互换的,用于指示缺失值或空值。...要检查panda DataFrame中的空值,我们使用isnull()或notnull()方法。方法返回布尔值的数据名,对于NaN值为真。...在相反的位置,notnull()方法返回布尔值的数据,对于NaN值是假的。 value = df.notnull() # Opposite of df2.isnull() ?
具体来说,您将学习: 整洁数据的概念 如何处理缺失的数据 如何在数据中查找NaN值 如何过滤(删除)缺失的数据 Pandas 如何在计算中处理缺失值 如何查找,过滤和修复未知值 对缺失值执行插值 如何识别和删除重复数据...在本章中,我们将研究用 Pandas 解决这些问题有多么容易。 如何处理缺失的数据 当数据的NaN值(也称为np.nan – 来自 NumPy 的形式)时,Pandas 中的缺少。...该NaN值意味着在特定的Series中没有为特定的索引标签指定值。 数据如何丢失?...对于Series方法,此方法将返回非NaN值的数量。...如果要将数据放入实际的DataFrame中,请使用inplace=True参数。 在数学运算中处理 NaN 值 NaN值在 Pandas 中的处理方式与在 NumPy 中的处理方式不同。
在Python中,我们创建计算列的方式与PQ中非常相似,创建一列,计算将应用于这整个列,而不是像Excel中的“下拉”方法那样逐行进行。要创建计算列,步骤一般是:先创建列,然后为其指定计算。...图1 在pandas中创建计算列的关键 如果有Excel和VBA的使用背景,那么一定很想遍历列中所有内容,这意味着我们在一个单元格中创建公式,然后向下拖动。然而,这不是Python的工作方式。...其正确的计算方法类似于Power Query,对整个列执行操作,而不是循环每一行。基本上,我们不会在pandas中循环一列,而是对整个列执行操作。这就是所谓的“矢量化”操作。...处理数据框架中NAN或Null值 当单元格为空时,pandas将自动为其指定NAN值。我们需要首先考虑这些值,因为在大多数情况下,pandas不知道如何处理它们。...我们可以使用.fillna()方法将NAN值替换为我们想要的任何值。出于演示目的,这里只是将NAN值替换为字符串值“0”。
另一方面,如果我们日常的数据清理工作不是很复杂的话,你通常用几句 Pandas 代码就可以对数据进行规整。 Pandas 可以说是基于 NumPy 构建的含有更高级数据结构和分析能力的工具包。...在 NumPy 中数据结构是围绕 ndarray 展开的,那么在 Pandas 中的核心数据结构是什么呢?...数据量大的情况下,有些字段存在空值 NaN 的可能,这时就需要使用 Pandas 中的 isnull 函数进行查找。...Pandas 和 NumPy 一样,都有常用的统计函数,如果遇到空值 NaN,会自动排除。...(例如0),或者用于指定每个索引(对于Series)或列(对于DataFrame)使用哪个值的Dict /Series / DataFrame。
另一方面,如果我们日常的数据清理工作不是很复杂的话,你通常用几句 Pandas 代码就可以对数据进行规整。 Pandas 可以说是基于 NumPy 构建的含有更高级数据结构和分析能力的工具包。...在 NumPy 中数据结构是围绕 ndarray 展开的,那么在 Pandas 中的核心数据结构是什么呢?...: 数据量大的情况下,有些字段存在空值 NaN 的可能,这时就需要使用 Pandas 中的 isnull 函数进行查找。...Pandas 和 NumPy 一样,都有常用的统计函数,如果遇到空值 NaN,会自动排除。...(例如0),或者用于指定每个索引(对于Series)或列(对于DataFrame)使用哪个值的Dict /Series / DataFrame。
' 类似method='min',但是组间排名总是增加1,而不是一个组中相等的元素数量 大家可以下面自己练习。...下面是对一个DataFrame的一个示例: import pandas as pd import numpy as np frame = pd.DataFrame([[2, np.nan], [7, -...print('最大值的索引:\n', frame.idxmax()) #查找最大值所在位置 print('列上累计和:\n', frame.cumsum()) print('获取描述性信息:\n', frame.describe...,都有axis和skipna这两个参数,在具体情况中具体使用。...,数值则是不同值在每个列出现次数。
领取专属 10元无门槛券
手把手带您无忧上云