学生在规定的地点范围内进行人脸识别打卡小程序,也可以进行请假,教师在小程序端发布要上的课程以及定位教室和指定范围内可以打卡。同时还展示学生的考勤信息。管理员进行教师学生管理,采集人脸信息,分配课程等。
在周二的一篇博客文章中,Facebook社交网络的新母公司Meta宣布,该平台将删除超过10亿人的人脸模板,并关闭其人脸识别软件,这种软件使用一种算法来识别上传到Facebook的照片中的人。
开发人脸识别系统,人脸数据集是必须的。所以在我们开发这套人脸识别系统的准备工作就是获取人脸数据集。本章将从公开的数据集到自制人脸数据集介绍,为我们之后开发人脸识别系统做好准备。
图像修复技术是一种用可选内容填充目标区域的技术,它的主要用途是在对象删除任务中,从照片中删除一个对象,并用希望能保持图像上下文完整性的内容自动替换被删除的部分。
一、功能特点 支持的功能包括人脸识别、人脸比对、人脸搜索、活体检测等。 在线版还支持身份证、驾驶证、行驶证、银行卡等识别。 在线版的协议支持百度、旷视,离线版的支持百度,可定制。 除了支持X86架构,还支持嵌入式linux比如contex-A9、树莓派等。 每个功能的执行除了返回结果还返回执行用时时间。 多线程处理,通过type控制当前处理类型。 支持单张图片检索相似度最高的图片。 支持指定目录图片用来生成人脸特征值文件。 可设置等待处理图片队列中的数量。 每次执行都有成功或者失败的信号返回。 人脸搜索的返
现在,人们越来越注重信息安全、财产安全、人身安全。随着科技与人工智能的发展,门禁系统也进行升级,智慧门禁系统逐渐进入人们视野,智慧社区服务正在进行。
近日,位于江苏南京的中国药科大学被推到了舆论风口浪尖,原因就是在教室使用人脸识别系统。
该清单按照字母排序,对 API 的概述是基于对应官网所提供的信息整合而成。要是大家发现该清单中错过了某些当前流行的 API,可以在评论中告知。
API是一套用于构建应用软件程序的规范,协议和工具。在本文中,我们从2017年的清单中删除了停用的API,并利用新元素对其进行了更新。并且,所有的API被归类到以下几个领域:
在目标检测领域可以划分为了人脸检测与通用目标检测,往往人脸这方面会有专门的算法(包括人脸检测、人脸识别、人脸和其他属性的识别等等),并且可以和通用目标检测(识别)有一定的差别,这主要来源于人脸的特性(有时候目标比较小、人脸之间特征不明显、遮挡问题等),下面将从人脸检测和通用目标检测两个方面来讲解目标检测。
在目标检测领域,可以划分为人脸检测与通用目标检测,往往人脸这方面会有专门的算法(包括人脸检测、人脸识别、人脸其他属性的识别等),并且和通用目标检测(识别)会有一定的差别。这主要来源于人脸的特殊性(譬如有时候目标比较小、人脸之间特征不明显、遮挡问题等),本文将主要从人脸检测方面来讲解目标检测。
9月4日,腾讯云正式发布多脸融合新产品,该产品在之前单脸融合的基础上,新增多脸融合和选脸融合。同时,内置新型算法,让融合效果表现更优异。
java实现的企业批量排班系统,出差请假打卡统计,排班,设置部长,发布公告等功能。人脸识别考勤打卡。
人脸识别是机器学习的直接应用,这项技术已经被消费者、行业和执法机关广泛采用,它可能为我们的日常生活带来了便利,但也有严重的隐私问题。人脸识别已经超过了人类的工作效率,但是,在某些应用中实际实现时还存在问题。 立足于九十年代MIT的Eigenfaces方法,人脸识别第一次成功的大规模实现是2014年Facebook的DeepFace项目,准确性在实验室条件下达到了人类水平。从2014年开始,更大的训练数据集、GPU以及神经网络架构的快速发展进一步提高了人脸识别在通向现实世界可靠应用的更为丰富的上下文中的效率。
大数据文摘作品 编译:大茜、Shan LIU、云舟 还在为找不到机器学习的API而烦恼吗?本篇文章将介绍一个包含50+关于人脸和图像识别,文本分析,NLP,情感分析,语言翻译,机器学习和预测的API列表,快快收藏吧~ API是一套用于构建应用软件程序的规范,协议和工具。在本文中,我们从2017年的清单中删除了停用的API,并利用新元素对其进行了更新。并且,所有的API被归类到以下几个领域: 人脸和图像识别 文本分析,NLP,情感分析 语言翻译 机器学习和预测 在每组应用中,列表中的元素按字母顺序排列。相
随着圣诞的到来,大家纷纷@今日头条给自己的头像加上一顶圣诞帽。当然这种事情用很多P图软件都可以做到。但是作为一个学习图像处理的技术人,还是觉得我们有必要写一个程序来做这件事情。而且这完全可以作为一个练手的小项目,工作量不大,而且很有意思。 用到的工具 OpenCV(毕竟我们主要的内容就是OpenCV...) dlib(前一篇文章刚说过,dlib的人脸检测比OpenCV更好用,而且dlib有OpenCV没有的关键点检测。) 用到的语言为Python。但是完全可以改成C++版本,时间有限,就不写了。有兴趣的
【新智元导读】本论文对人脸识别和验证任务提出一种新的损失函数,即中心损失。中心损失和softmax损失联合监督学习的CNN,其对深层学习特征的人脸识别能力大大提高。对几个大型人脸基准的实验已经令人信服地证明了该方法的有效性。 相关论文 题目:A Discriminative Feature Learning Approachfor Deep Face Recognition 作者:Yandong Wen, Kaipeng Zhang, Zhifeng Li*, YuQiao 新智元微信公众号回复1015,
来源:大数据文摘本文约2500字,建议阅读6分钟本文介绍了湖北中学使用瞳孔检测的情况。 试想,当你在学校准备去吃饭,来到食堂,刷一下脸,确认信息,选择爱吃的菜品,点击确认,完成结账。 整个过程可以说是一气呵成。 如今随着支付手段的变化,这样的情形也已经在现实中确实发生了。 最近,湖北恩施巴东县京信友谊中学就推出了这么一项基于人脸识别的支付系统,整个过程也只需要绑定家长的支付宝账户或者开通电子饭卡。之所以要推出该系统,主要是考虑到学生丢失饭卡的问题,同时这也更有利于家长管理学生日常消费,还能大幅节省排队充卡
近日,美国联邦贸易委员会(Federal Trade Commission ,FTC)公布了一项特殊的处罚决定:勒令一家名为「Everalbum」的公司删除其从客户手中收集的照片,以及利用这些数据训练出的所有算法。
大数据文摘出品 作者:Caleb 试想,当你在学校准备去吃饭,来到食堂,刷一下脸,确认信息,选择爱吃的菜品,点击确认,完成结账。 整个过程可以说是一气呵成。 如今随着支付手段的变化,这样的情形也已经在现实中确实发生了。 最近,湖北恩施巴东县京信友谊中学就推出了这么一项基于人脸识别的支付系统,整个过程也只需要绑定家长的支付宝账户或者开通电子饭卡。之所以要推出该系统,主要是考虑到学生丢失饭卡的问题,同时这也更有利于家长管理学生日常消费,还能大幅节省排队充卡时间,提高工作效率。 不过,看上去科技感满满的人脸
在人脸识别应用中,很多场景能够获取某一个体的多幅人脸图像的集合(比如在监控视频中),使用人脸图像集来做识别,这个问题被称为基于模板的人脸识别(template-based face recognition)。
本篇基于 2017 年的推荐清单做了一些改进——去除了一些不再进行维护的 API,并且更新了一些新的 API。主要覆盖如下方向:
最近因为博主科研繁忙,没有时间更新,在此向所有关注的您说一声对不起!希望没有计算机视觉战队大家依然科研顺利,生活愉快,也希望大家时刻关注我们的平台,宣传计算机视觉战队,谢谢! ---- 今天我来给大家讲讲人脸识别的一些小事,希望您能有些收获,谢谢! n 主要内容 卷积神经网络(CNN)已广泛地用于计算机视觉领域,显著地提高了先进的方法。在大多数的CNNs中,softmax损失函数被作为监督信号去训练深度模型。为了增强深度学习特征的判别力,提出一种新的监督信号,称为中心损失,用于人脸识别任务。中心损失同时学
最近因为比较繁忙,没有及时在“计算机视觉战队”平台更新,在此向所有关注的同学说一声抱歉!希望这段日子大家依然科研顺利,生活愉快,嘿嘿!
最近因为博主科研繁忙,没有时间更新,在此向所有关注的您说一声对不起!希望没有ComputerVisionGzq 大家依然科研顺利,生活愉快,嘿嘿! 今天我来给大家讲讲人脸识别的一些小事,希望您能有些收
一位浙江理工大学的特聘副教授将杭州野生动物世界告上法庭,认为该动物园强制收集个人生物信息,时隔8个月,近日这起案件终于开庭了。
机器之心报道 机器之心编辑部 这项研究基于现有公开人脸数据集创建了目前全球最大的人脸数据集,并实现了一个高效的分布式采样算法,兼顾模型准确率和训练效率,只用八块英伟达 RTX2080Ti 显卡就可以完成数千万人脸图像的分类任务。 人脸识别是计算机视觉社区长期以来的活跃课题。之前的研究者主要关注人脸特征提取网络所用的损失函数,尤其是基于softmax的损失函数大幅提升了人脸识别的性能。然而,飞速增加的人脸图像数量和GPU内存不足之间的矛盾逐渐变得不可调和。 最近,格灵深瞳、北京邮电大学、湘潭大学和北京理工大学
近日,在腾讯优图实验室、腾讯图灵盾安全、腾讯云牌照资质团队支持下,腾讯云慧眼人脸核身(V3.0)顺利通过公安部安全与警用电子产品质量检测中心安全检测(以下简称“检测中心”)。
近日,在国家工业信息安全发展研究中心主办的人工智能融合发展与安全应用研讨会上,国家语音及图像识别产品质量检验检测中心正式发布了首批人脸识别系统安全测评结果—— 腾讯云慧眼成为首批通过测评的人脸识别系统安全产品。 国家语音及图像识别产品质量监督检验中心(简称“国检中心”)是国家市场监督管理总局于2020年授予CMA和CAL资质,是国家级的第三方检验检测中心。 据介绍,这是首个面向人脸识别系统安全性的国家级检测与评估。 依据T/CESA1124-2020《信息安全技术人脸比对模型安全技术规范》,通过包括算法层
人眼中心定位是一个用于眼部追踪的算法,它来源于github中eyelike项目,C++语言实现,依赖OpenCV库。 关于代码的编译,作者提供了CMakeLists.txt文件,同时支持Windows,Linux和Mac OS X。 该项目只实现了简单的2维眼球跟踪功能,没有3维信息,也没有视线跟踪和估计功能。 作者提供了另一个博客链接Simple, accurate eye center tracking in OpenCV,其中有一段演示视频,可以看到跟踪效果。 项目主要的算法来源于剑桥大学的一篇文章:《Accurate eye centre localisation by means of gradients》。
连接EP——获取EP图像——处理EP图像——获得人脸坐标——控制云台运动 下面我们就开始吧。
机器之心发布 机器之心编辑部 来自中科大、快手的研究者针对人脸伪造,提出了基于单中心损失监督的频率感知鉴别特征学习框架,将度量学习和自适应频率特征学习应用于人脸伪造检测,实现SOTA性能。 一:背景和动机 随着基于自编码器和生成对抗网络的图像生成技术的快速发展,以deepfake为代表的人脸伪造技术在娱乐大众的同时,也带来巨大的安全隐患。与之对应的,人脸伪造检测也逐渐成为计算机视觉领域研究的热点。 目前的检测方法大多数将伪造检测任务转化为二分类任务来处理,使用softmax loss[1] 监督网络在自然
以OpenFace算法中实现人脸识别的流程举例,这个流程可以看做是使用深度卷积网络处理人脸问题的一个基本框架,结构如下图所示
真实世界的人脸复原是一个盲问题,即我们不清楚降质过程, 在实际应用中,同时也面临着各种各样降质过程的挑战。对于人脸这个特定的任务, 之前的工作往往会探索人脸特定的先验, 并且取得了较好的效果。常见的人脸先验有两类:
我这里简单讲下OpenFace中实现人脸识别的pipeline,这个pipeline可以看做是使用深度卷积网络处理人脸问题的一个基本框架,很有学习价值。 它的结构如下图所示: 1 Input Imag
这里简单讲下OpenFace中实现人脸识别的pipeline,这个pipeline可以看做是使用深度卷积网络处理人脸问题的一个基本框架,很有学习价值,它的结构如下图所示:
受弗洛伊德事件影响,6月10日,美国科技巨头IBM宣布正式放弃人脸识别技术,紧接着第二天,亚马逊表示停止对警方提供面部识别技术。
机器之心发布 机器之心编辑部 人脸复原 (Face Restoration) 是指从低质量的人脸中复原得到高清的人脸。真实世界中的人脸复原是一个很有挑战的任务,因为降质 (degradation) 过程复杂且不尽相同。来自腾讯 PCG 应用研究中心 (ARC) 的研究者们提出了利用预先训练好的人脸生成模型提供的先验,来指导人脸复原的任务。 真实世界的人脸复原是一个盲问题,即我们不清楚降质过程, 在实际应用中,同时也面临着各种各样降质过程的挑战。对于人脸这个特定的任务, 之前的工作往往会探索人脸特定的先验,
来源 | https://towardsdatascience.com/real-time-age-gender-and-emotion-prediction-from-webcam-with-keras-and-opencv-bde6220d60a
对互联网企业而言,数据信息既是心头肉,又是心头痛,在利益与维系用户隐私安全面前走钢索,翻车在所难免。最近一年以来,知名社交平台Facebook母公司Meta可谓罚单不断,其中因为数据处理和隐私安全等问题所遭受到的来自各国的罚款就已超过10亿美元。本文梳理了自2021年以来Meta吃到的典型罚单案例。
在做数字人时,需要对采集的数据进行预处理,然后才能进行模型训练, 预处理常用的操作有:去背景 音频重采样 视频裁剪 音频特征提取等等,今天我们来分享一个自动化脚本: 对原图/视频进行人脸检测并根据目标尺寸以人脸为中心进行裁剪.
这是人脸识别系列的第5篇文章,前4篇文章可以在公众号的人脸识别栏里找到,这篇文章主要是解析CVPR 2014年的经典人脸识别论文DeepID1算法。论文的地址如下:http://mmlab.ie.cuhk.edu.hk/pdf/YiSun_CVPR14.pdf 。
在现代化企业中,工厂实施安防视频监控系统,安全保卫部门可以实现在企业厂区门口、厂房、办公楼、周界围墙、仓库等目标进行实时全天候视频监控。
AI 科技评论按:2018 年 4 月 14 日-15 日,中国图象图形学学会围绕「生物特征识别」这一主题,在中科院自动化所举办第四期「CSIG 图像图形学科前沿讲习班」。
--- 拔出你心中最困惑的刺!--- 在这个用过即弃的时代,不要让你的求知欲过期。 今日拔刺: 1、人工智能抢饭碗,未来怎么养活家庭? 2、人脸识别的发展水平? 3、最近区块链满天飞,个人信息泄露严重
链接:https://zhuanlan.zhihu.com/p/265673438
【新智元导读】本文介绍深度学习方法在图像翻译领域的应用,通过实现一个编码解码“图像翻译机”进行图像的清晰化处理,展示深度学习应用在图像翻译领域的效果。 近年来深度学习在图像处理、音频处理以及NLP领域取得了令人瞩目的成绩,特别在图像处理领域,深度学习已然成为主流方法。本文介绍深度学习方法在图像翻译领域的应用,通过实现一个编码解码“图像翻译机”进行图像的清晰化处理,展示深度学习应用在图像翻译领域的效果。此外,由于神经网络能够自动进行特征工程,同一个模型,如果我们使用不同场景下的数据进行训练,便可适应不同的场景
大家好,我叫翟磊,来自英特尔开源技术中心。今天我演讲的主题是《基于英特尔架构的实时视频流分析系统的设计与优化》,主要会从以下几个方面进行介绍:首先,背景介绍;其次,我会通过硬件和软件两个层面,来对英特尔视觉云计算平台进行详细的介绍,但主要还是侧重于软件层面。然后,结合我们现在正在做的一个名为Intel Collaboration Suite for WebRTC的项目实践来跟大家讲述一下,如何快速地在英特尔计算平台上构建一个实时、可扩展的实时视频流分析系统,最后,我会做一些总结。
领取专属 10元无门槛券
手把手带您无忧上云