authors:: Defu Lian, Yongji Wu, Yong Ge, Xing Xie, Enhong Chen container:: Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining year:: 2020 DOI:: 10.1145/3394486.3403252 rating:: ⭐⭐⭐ share:: true comment:: 创新主要在于地理位置信息编码,将 GPS 信息转化为网格,再对 quadkey 进行编码,损失函数部分加上负样本概率对负样本进行加强。
在Java中,上述三个类经常用于处理数据流,下面介绍一下三个类的不同之处以及各自的用法。
前一阵项目中,有一个需求:是查找附近的人,其实就是查询某个距离内有多少用户。实现方式还是比较简单的,首先用户在APP上开启定位权限,将自己的经纬度都存储到数据库,然后以此经纬度为基准,以特定距离为半径,查找此半径内的所有用户。 那么,如何java如何计算两个经纬度之间的距离呢?有两种方法,误差都在接受范围之内。 1、基于googleMap中的算法得到两经纬度之间的距离,计算精度与谷歌地图的距离精度差不多。
前一阵项目中,有一个需求:是查找附近的人,其实就是查询某个距离内有多少用户。实现方式还是比较简单的,首先用户在APP上开启定位权限,将自己的经纬度都存储到数据库,然后以此经纬度为基准,以特定距离为半径,查找此半径内的所有用户。
这次我爬出了哈尔滨市TOP285家好吃的店,包括烧烤的TOP,饺子的TOP,酱骨的TOP等等等等,在地图上显示,规划热点,再用聚类算法计算下能不能找出吃货最佳的住宿点,能够距离吃的各个地方行程最近,吃货们,准备好了吗? 回复公众号"吃货" 获取更多源码。 目的 可视化美食热点,规划各类美食聚集点,规划行程。 准备食材 首先,我不对这次排行的可信度负责,我只是直接百度的top餐厅,里面的水分大家自己掂量,甩锅给哈尔滨美食最新榜出炉,史上最强300家美食满足你各种挑剔! http://www.360doc.c
本篇接上篇:Java中的字符流,流的读写的细节参考上篇 本篇讲述字节流相关话题,包括字节流的读取与写出,字节流转化为字符流 1.明确是否是纯文本:纯文本 ? 字符流: 字节流 2.明确数据来源
咦咦咦,各位小可爱,我是你们的好伙伴——bug菌,今天又来给大家普及Java SE相关知识点了,别躲起来啊,听我讲干货还不快点赞,赞多了我就有动力讲得更嗨啦!所以呀,养成先点赞后阅读的好习惯,别被干货淹没了哦~
本文实例讲述了PHP进阶学习之Geo的地图定位算法。分享给大家供大家参考,具体如下:
Exif(Exchangeable image file format 可交换图像文件格式),是一种图像文件格式,其数据存储与JPEG格式是完全相同的,EXIF可以附加于JPEG、TIFF、RIFF、RAW等文件之中,为其增加有关数码相机拍摄信息的内容和索引图或图像处理软件的版本信息。
字节流与和字符流的使用非常相似,两者除了操作代码上的不同之外,是否还有其他的不同呢? 实际上字节流在操作时本身不会用到缓冲区(内存),是文件本身直接操作的,而字符流在操作时使用了缓冲区,通过缓冲区再操作文件,如图所示。
在去年cosbeta曾经发布了一个网页计算工具,这个作用就是根据地球上两点之间的经纬度计算两点之间的直线距离。经纬度到距离的计算在通信工程中应用比较广泛,所以cosbeta通过搜索找到了一个js的计算脚本(其实是google map的计算脚本,应该算是比较准确了),做成了这个经纬度算距离的工具。
上周在群里有小盆友问 transient 关键字是干什么的。这篇文章就以此为契机介绍一下 transient 的作用,以及在 ArrayList 里面的应用。
本文作者:smallyang,腾讯 IEG 开发工程师 什么是geohash?它的原理是什么?它帮助我们解决了哪些痛点,本文为你娓娓道来。 本文包含以下内容,阅读完需要约10分钟: 我们日常生活中遇到哪些定位的场景 简单复习一下经纬度 geohash原理解析 geohash存在的边界问题 如何解决边界问题 计算两点距离的计算 geohash 在redis中的实现 我们日常生活中遇到哪些定位的场景 我们上下班经常会用APP打车和共享单车,下面2张图,应该都很熟悉,打开定位,查找我附近的车,那么,这
考虑到在座的各位...都是泥腿子,唯一会做的就是用PHP CRUD,而且即便是只会搞CRUD,也还是离不开MySQL。
最近几天推送频率之所以下降了,不是因为偷懒,是在攻克一个难题~ 还记得前一篇推送,关于山东省财政数据可视化那一篇,因为没有精准、最新的山东省县级市边界地图素材数据,花了好多冤枉功夫,搜地图素材各种碰壁,最后的得到的地图数据并不尽如人意。 现在shp的素材相比json整体都不太流行了,无论是制作成本上还是占用内存上以及与实际行政区划的更新速度上,json地图素材轻便、时效、易获取,很多网站都提供这种轻量级的数据文件。 可是json文件遵循的JS语法,导入R中之后,全部被强制转化为各种嵌套的list、data.
经度,用以指示一个地点的东西向地理位置。地球上某一地点离本初子午线以东或以西的度数。本初子午线的经度是0°,「东经为正数,西经为负数」。
导语 | 我们在使用APP时,是什么能让它快速精准定位我们的具体位置?答案就是geohash。那究竟什么是geohash呢?它的原理是什么?它又帮助我们解决了哪些痛点,本文帮你逐一击破,且听我娓娓道来。 一、日常生活中遇到哪些定位的场景 我们上下班经常会用APP打车和共享单车,下图应该都很熟悉,打开定位,查找我附近的车,那么,这个是怎么实现的呢? 我脑海中第一个实现方式是:实时上报经纬度。在数据库里,把经纬度都标记为索引,通过查找对比经纬度的值,来找到附近1km的车子,但是这种做法第一是索引比较多
基于很多同志询问添加经纬度办法,系统性重编了地图的经纬度添加方式。各种投影中以矩形投影PlateCarree最为方便,可以套用matplotlib.mticker的形式。在最新的0.18版本的cartopy中,虽然还不完善,但是终于能直接绘制兰勃脱下的标签了。墨卡托在官网上有示例。
从上图我们可以看出,数据是以XHR的形式进行存储在网页中,我们在之前的文章已经详细的介绍过这类网站的爬取方法了,有兴趣的读者可以看看这篇文章。我们直接展示核心代码:
本文为MIT Senseable City Laboratory 2018年5月23号发表于Nature杂志Addressing the minimum fleet problem in on-demand urban mobility论文的学习笔记。
记忆中,一个下班的夜晚,她从人群中轻盈的移动着,那高挑苗条的身材像漂浮在空间中的一个飘逸的音符。她的眼睛充满清澈的阳光和活力,她的双眸中印着银河系的星光。
运营商的网络大数据具有实时性高、覆盖业务广、业务价值大等特点,利用网络大数据赋能网络运营智慧化是各运营商的迫切诉求,今天就给大家分享一下我们在利用网络大数据提升移动网智慧运营方面做过的一些实践活动。
命令大小写都可以,如果你只想单纯看 API,不想看例子,请移到最下面的 指令总结。
来源:juejin.im/post/5da40462f265da5baf410a11
目前 GPS 的国际标准坐标系统, GPS 所发布的星历参数就是基于此坐标系统的。WGS-84 坐标系统的全称是World Geodical System-84(世界大地坐标系-84),它是一个地心地固坐标系统。WGS-84 坐标系统由美国国防部制图局建立,于1987 年取代了当时GPS所采用的坐标系统―WGS-72坐标系统而成为GPS 的所使用的坐标系统。WGS-84 坐标系的坐标原点位于地球的质心,Z 轴指向BIH1984.0 定义的协议地球极方向,X 轴指向BIH1984.0 的启始子午面和赤道的交点,Y 轴与X 轴和Z 轴构成右手系。
针对“附近的人”这一位置服务领域的应用场景,常见的可使用PG、MySQL和MongoDB等多种DB的空间索引进行实现。
前言:针对“附近的人”这一位置服务领域的应用场景,常见的可使用PG、MySQL和MongoDB等多种DB的空间索引进行实现。而Redis另辟蹊径,结合其有序队列zset以及geohash编码,实现了空间搜索功能,且拥有极高的运行效率。
针对“附近的人”这一位置服务领域的应用场景,常见的可使用PG、MySQL和MongoDB等多种DB的空间索引进行实现。而Redis另辟蹊径,结合其有序队列zset以及geohash编码,实现了空间搜索功能,且拥有极高的运行效率。本文将从源码角度对其算法原理进行解析,并推算查询时间复杂度。
https://juejin.im/post/5da40462f265da5baf410a11
要提供完整的“附近的人”服务,最基本的是要实现“增”、“删”、“查”的功能。以下将分别进行介绍,其中会重点对查询功能进行解析。
码老湿,阅读了你的巧用数据类型实现亿级数据统计之后,我学会了如何游刃有余的使用不同的数据类型(String、Hash、List、Set、Sorted Set、HyperLogLog、Bitmap)去解决不同场景的统计问题。
GeoHash本质上是空间索引的一种方式,其基本原理是将地球理解为一个二维平面,将平面递归分解成更小的子块,每个子块在一定经纬度范围内拥有相同的编码。以GeoHash方式建立空间索引,可以提高对空间poi数据进行经纬度检索的效率。
Bitmaps 并不是实际的数据类型,而是定义在String类型上的一个面向字节操作的集合。因为字符串是二进制安全的块,他们的最大长度是512M,最适合设置成2^32个不同字节。 bitmaps的位操作分成两类:1.固定时间的单个位操作,比如把String的某个位设置为1或者0,或者获取某个位上的值 2.对于一组位的操作,对给定的bit范围内,统计设定值为1的数目(比如人口统计)。 bitmaps最大的优势是在存储数据时可以极大的节省空间,比如在一个项目中采用自增长的id来标识用户,就可以仅用512M的内存来记录40亿用户的信息(比如用户是否希望收到新的通知,用1和0标识)
根据经纬度和半径计算经纬度范围: /** * 根据经纬度和半径计算出范围 * @param string $lat 纬度 * @param String $lng 经度 * @param float $radius 半径 单位:m * @return Array 范围数组 */ if (!function_exists('calc_scope')){ function calc_scope($lat, $lng, $radius) { $degree = (2490
前言:针对“附近的人”这一位置服务领域的应用场景,常见的可使用PG、MySQL和MongoDB等多种DB的空间索引进行实现。而Redis另辟蹊径,结合其有序队列zset以及geohash编码,实现了空间搜索功能,且拥有极高的运行效率。本文将从源码角度对其算法原理进行解析,并推算查询时间复杂度。
针对“附近的人”这一位置服务领域的应用场景,互联网应用几乎每天都会用到,比如搜附近的美食,周边游等等;常见的可使用PG、MySQL和MongoDB等多种DB的空间索引进行实现。而Redis另辟蹊径,结合其有序队列 zset 以及 geohash 编码,实现了空间搜索功能,且拥有极高的运行效率。本文将从源码角度对其算法原理进行解析,并推算查询时间复杂度。
作者简介:万汨,饿了么资深开发工程师。iOS,Go,Java均有涉猎。目前主攻大数据开发。喜欢骑行、爬山。
你们有没有遇到被面试官嘲讽的场景;之前有位刚毕业的小学弟在上海魔都某某某大公司面试,二面主要是问了关于redis的相关知识点,回答的也是磕磕绊绊的,其中一个问题是如何实现搜索附近人加好友功能;想跟小伙伴们一起分享、一起探讨下。如果有不正确的地方,欢迎指正批评,共同进步~~~
1、首先理解地理坐标系(Geographic coordinate system),Geographic coordinate system直译为 地理坐标系统,是以经纬度为地图的存储单位的。很明显,Geographic coordinate syst em是球面坐标系统。我们要将地球上的数字化信息存放到球面坐标系统上,如何进行操作 呢?地球是一个不规则的椭球,如何将数据信息以科学的方法存放到椭球上?这必然要求 我们找到这样的一个椭球体。这样的椭球体具有特点:可以量化计算的。具有长半轴,短
geohash是一种分层的空间数据结构,将空间网格化.并将二维坐标用一个字符串表示.
最近需要实现一个功能,查找车辆附近的加油站,如果车和加油站距离在200米以内,则查找成功。
在本文中,我会展示如何在经纬度坐标对上使用tSNE来创建地图数据的一维表示。这种表示有助于开发新的地图搜索算法。这对于诸如“这个经纬度坐标是新泽西或者纽约的吗?”或“离我最近的披萨位置在哪里?”这样的查询非常有用。更快的地图搜索对于Uber,Google Maps和Directions,Yelp等公司来说非常有价值。
本文引用了饿了么资深开发工程师万汨“Redis 到底是怎么实现“附近的人”这个功能的呢?”一文的内容,感谢原作者的分享,为了提升文章品质,即时通讯收录时有内容补充和修订。
地理编码/逆地理编码 API 是通过 HTTP/HTTPS 协议访问远程服务的接口,提供结构化地址与经纬度之间的相互转化的能力。
来源:juejin.cn/post/6844903966061363207 作者简介:万汨,饿了么资深开发工程师。iOS,Go,Java均有涉猎。目前主攻大数据开发。喜欢骑行、爬山。 前言:针对“附近的人”这一位置服务领域的应用场景,常见的可使用PG、MySQL和MongoDB等多种DB的空间索引进行实现。而Redis另辟蹊径,结合其有序队列zset以及geohash编码,实现了空间搜索功能,且拥有极高的运行效率。 本文将从源码角度对其算法原理进行解析,并推算查询时间复杂度。 要提供完整的“附近的人”服务,
领取专属 10元无门槛券
手把手带您无忧上云