首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

SVM算法实现光学字符识别

OCR (Optical Character Recognition,光学字符识别)是指电子设备(例如扫描仪或数码相机)检查纸上打印的字符,通过检测暗、亮的模式确定其形状,然后用字符识别方法将形状翻译成计算机字符的过程...光学字符识别是OCR的核心,然而对于许多类型的机器学习算法来说,这种图像处理都是一项艰巨的任务。 将像素模式连接到更高概念的关系是极其复杂的,而且很难定义。...)来构建光学字符识别模型。...在sklearn.svm包中,有三个类均实现了支持向量机算法:SVC, NuSVC 和 LinearSVC。 SVC 和 NuSVC接受的参数有细微差别,且底层的数学形式不一样。...=0.01,0.1,1,10,100C=0.01,0.1,1,10,100时字符识别模型正确率的变化。

1K30

OpenCV手写数字字符识别(基于k近邻算法)

摘要 本程序主要参照论文,《基于OpenCV的脱机手写字符识别技术》实现了,对于手写阿拉伯数字的识别工作。识别工作分为三大步骤:预处理,特征提取,分类识别。...K最近邻(k-Nearest Neighbor,KNN)分类算法,是一个理论上比较成熟的方法,也是最简单的机器学习算法之一。...训练在CvKNearest算法初始化中已经完成 2....未来的工作 本程序主要参照网上的一些实例完成了部署跟实验工作,虽然仅仅完成了手写阿拉伯数字的识别工作,但是字符识别的一些原理工作都是相同的,未来能够从一下几个方面进行提高: 1.     ...提高识别速度,改进算法为并行算法,实现如联机在线识别等。

70310
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    ocr字符识别原理及算法_产品系列之一

    太多太多的应用了,OCR的应用在当今时代确实是百花齐放啊。 OCR的分类 如果要给OCR进行分类,我觉得可以分为两类:手写体识别和印刷体识别。...但是,并不是所有应用都需要识别如此庞大的汉字集,比如车牌识别,我们的识别目标仅仅是数十个中国各省和直辖市的简称,难度就大大减少了。...当然,在一些文档自动识别的应用是需要识别整个汉字集的,所以要保证识别的整体的识别还是很困难的。...从大的模块总结而言,一套OCR流程可以分为: 版面分析 -> 预处理-> 行列切割 -> 字符识别 -> 后处理识别矫正 从上面的流程图可以看出,要做字符识别并不是单纯一个OCR模块就能实现的...大杀器:基于深度学习下的CNN字符识别 上面提到的OCR方法都有其有点和缺点,也正如此,他们也有各自特别适合的应用场景。

    3.2K10

    附代码 | OpenCV实现银行卡号识别,字符识别算法你知多少?

    作者 | 李秋键 责编 | Carol 头图 | CSDN 付费下载自视觉中国 随着计算机视觉在我们生活中的应用越来越广泛,大量的字符识别和提取应用逐渐变得越来越受欢迎,同时也便利了我们的生活。...字符识别是模式识别的一个重要应用,首先提取待识别字符的特征;然后对提取出来的特征跟字符模板的特征匹配;最后根据准则判定该字符所属的类别。...不同的训练方法,不同的特征提取, 不同的匹配规则,就相应的有不同的字符识别方法,基本上很多就是在这些地方做改进,或者是采用新的规则。但是万变不离其宗。 1、模板匹配字符识别算法。...模板匹配字符识别算法是图像识别中的经典算法之一,该算法的核心思想是:通过比较待识别字符图像的字符特征和标准模板的字符特征,计算两者之间的相似性,相似性最大的标准模板的字符即为待识别的字符。...2、神经网络字符识别算法 主要思想:通过神经网络学习大量字符样本,从而得到字符的样本特征。当对待识别的字符进行识别时,神经网络就会将待识别字符的特征和之前得到的样本特征匹配,从而识别出字符。

    2K31

    用Transformer实现OCR字符识别

    本文将采用一个单词识别任务数据集,讲解如何使用transformer实现一个简单的OCR文字识别任务,并从中体会transformer是如何应用到除分类以外更复杂的CV任务中的。...optimizer等) 其中 ocr_by_transformer.py 为主要的训练脚本,其依托 train_utils.py 和 transformer.py 两个文件构建 transformer 来完成字符识别模型的训练...三、如何将transformer引入OCR 很多算法本身并不难,难的是如何思考和定义问题,把它转化到已知的解决方案上去。...关于构造transformer的输入embedding这部分的设计,是本文的重点,也是整个算法能够work的关键。后文会结合代码,对上面示意图中展示的相关细节进行展开讲解。...,关于如何应用到OCR部分,完全是结合作者个人理解实现的,不能保证一定能应用到更复杂的工程问题中。

    4.9K30

    【光学字符识别】OCR 浅述

    光学字符识别的发展最早的 OCR 应用在了帮助视障人群方面,1914 年,Emanuel Goldberg 开发了可以读取字符并将其转换为电报代码机器;几乎同时,Edmund Fournier d'Albe...IWR在一些文件归档、版权保护等方面有着重要的应用价值。随着 2012 年 Imagenet 竞赛采用深度学习技术的AlexNet夺得冠军,深度学习算法开始应用于图像视频领域。...同时,以往自然环境下的光学字符识别相比于传统的光学字符识别, 自然场景文字图像的前景文字和背景物体的变化很大, 光照情况也相当复杂,检测自然场景图像中的文字更具挑战,随着机器学习算法的引入,这一部分内容变得可信...特定场景下的字符识别智能OCR技术不仅可以用于文档识别,还可以应用于广告推荐、UCG图片和视频筛选、医学影像识别和街景路牌识别等场景。....中文OCR综述J.科技与出版,1997(01):23.DOI:10.16510/j.cnki.kjycb.1997.01.016.4王珂,杨芳,姜杉.光学字符识别综述J.计算机应用研究,2020,37

    69430

    用Transformer实现OCR字符识别

    本文将采用一个单词识别任务数据集,讲解如何使用transformer实现一个简单的OCR文字识别任务,并从中体会transformer是如何应用到除分类以外更复杂的CV任务中的。...optimizer等) 其中 ocr_by_transformer.py 为主要的训练脚本,其依托 train_utils.py 和 transformer.py 两个文件构建 transformer 来完成字符识别模型的训练...三、如何将transformer引入OCR 很多算法本身并不难,难的是如何思考和定义问题,把它转化到已知的解决方案上去。...关于构造transformer的输入embedding这部分的设计,是本文的重点,也是整个算法能够work的关键。后文会结合代码,对上面示意图中展示的相关细节进行展开讲解。...,关于如何应用到OCR部分,完全是结合作者个人理解实现的,不能保证一定能应用到更复杂的工程问题中。

    5.4K30

    【深度学习】光学字符识别(OCR)

    什么是OCR 1)定义 OCR (Optical Character Recognition,光学字符识别)是指对图片中的文字进行查找、提取、识别的一种技术,通过检测暗、亮的模式确定其形状,然后用字符识别方法将形状翻译成计算机文字的过程...,这与我们的期望不一样 5)评估指标 拒识率:把应该识别的文字,当成不能识别的文字 误识率:不应该作为文字的作为文字来识别 识别速度:一般可接受范围在50~500ms 稳定性:识别结果稳定性 6)应用...合并算法如下表所示: 合并算法: 设有一个集合B,里面有很多相关联的segment待合并; 每一个segment都有角度θ,求集合B中所有segment角度的平均值θbθ_bθb​; 求一条直线L,使得所有...(4)它产生了一个有效而小得多的模型,这对于现实世界的应用场景更为实用。...梯度由反向传播算法计算。特别地,在转录层中,误差使用前向算法进行反向传播。在循环层中,应用随时间反向传播(BPTT)来计算误差。 为了优化,使用ADADELTA自动计算每维的学习率。

    6.4K10

    OCR光学字符识别方法汇总

    光学字符识别(OCR)相信大家都不陌生,就是指电子设备(例如扫描仪或数码相机)检查纸上打印的字符,通过检测暗、亮的模式确定其形状,然后用字符识别方法将形状翻译成计算机文字的过程。...对于文字识别,实际中一般首先需要通过文字检测定位文字在图像中的区域,然后提取区域的序列特征,在此基础上进行专门的字符识别。但是随着CV发展,也出现很多端到端的End2End OCR。...01.基于传统算法的OCR技术 传统的OCR技术通常使用opencv算法库,通过图像处理和统计机器学习方法从图像中提取文本信息,包括二值化、噪声滤波、相关域分析、AdaBoost等。...2.1.3 EAST [4] EAST算法是一个高效且准确的文字检测算法,仅包括全卷积网络检测文本行候选框和NMS算法过滤冗余候选框两个步骤。...3.2.1 CNN + softmax [5] 此方法主要用于街牌号识别,对每个字符识别的架构为:先使用卷积网络提取特征,然后使用N+1个softmax分类器对每个字符进行分类。

    1.8K30

    算法】LDA算法应用

    笔者邀请您,先思考: 1 您怎么理解LDA算法? 2 您怎么应用LDA算法? 3 LDA算法的优劣是什么?...思想简介 Latent Dirichlet Allocation是Blei等人于2003年提出的基于概率模型的主题模型算法,LDA是一种非监督机器学习技术,可以用来识别大规模文档集或语料库中的潜在隐藏的主题信息...LDA应用 1、 相似文档发现 这个方法可以被用作新闻推荐中,正文详情页的“相关推荐”,该方法所述的相似文档是指的“主题层面”上的相似,这就比其他的基于word来挖掘的相似度更有意义。 ?...3、 自动打标签 算法实现也很简单,需要模型输出的theta和phi文件。...LDA的应用有很多,它只是一个中间结果,我们可以在这个中间结果基础上做出自己的运用,上面的应用也可以进行优化。 文章推荐: 1 TF-IDF算法应用 2 word2vec与doc2vec模型

    2.1K00

    【OCR技术系列一】光学字符识别技术介绍

    注:此篇内容主要是综合整理了光学字符识别 和OCR技术系列之一】字符识别技术总览,详情见文末参考文献 什么是 OCR?...但是,并不是所有应用都需要识别如此庞大的汉字集,比如车牌识别,我们的识别目标仅仅是数十个中国各省和直辖市的简称,难度就大大减少了。...当然,在一些文档自动识别的应用是需要识别整个汉字集的,所以要保证识别的整体的识别还是很困难的。 软件结构 由于扫描仪的普及与广泛应用,OCR软件只需提供与扫描仪的接口,利用扫描仪驱动软件即可。...API 传统方法做字符的特征提取,输入分类器,得出OCR模型 暴力的字符模板匹配法 大杀器:基于深度学习下的CNN字符识别 上面提到的OCR方法都有其有点和缺点,也正如此,他们也有各自特别适合的应用场景...参考: [1] 光学字符识别,百度百科 [2] 【OCR技术系列之一】字符识别技术总览

    5.9K40

    自适应算法应用实例_LMS自适应算法应用实物

    文章目录 一、理论基础 1、蝴蝶优化算法 2、改进的蝴蝶优化算法 (1)柯西变异 (2)自适应权重 (3)动态切换概率策略 (4)算法描述 二、函数测试与结果分析 三、参考文献 一、理论基础...2、改进的蝴蝶优化算法 为了改进蝴蝶算法容易陷入局部最优和收敛精度低的问题,本文从三个方面对蝴蝶算法进行改进。...因此本文提出一种混合策略改进的蝴蝶优化算法(CWBOA)。 (1)柯西变异 针对蝴蝶优化算法易陷入局部最优的特点,利用柯西变异来增加种群的多样性,提高算法的全局搜索能力,增加搜索空间。...CWBOA的具体执行步骤如下: 图1 改进算法的流程图 二、函数测试与结果分析 本文选取了基于柯西变异和动态自适应权重的蝴蝶优化算法(CWBOA) 、基本蝴蝶算法 (BOA)、鲸鱼算法(WOA...柯西变异和自适应权重优化的蝴蝶算法[J]. 计算机工程与应用, 2020, 56(15): 43-50. 版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。

    1.9K20

    算法】TF-IDF算法应用

    2 TF-IDF有什么应用? 3 如何提取文本的关键词和摘要?...这个问题涉及到数据挖掘、文本处理、信息检索等很多计算机前沿领域,但是出乎意料的是,有一个非常简单的经典算法,可以给出令人相当满意的结果。...所以,自动提取关键词的算法就很清楚了,就是计算出文档的每个词的TF-IDF值,然后按降序排列,取排在最前面的几个词。...除了自动提取关键词,TF-IDF算法还可以用于许多别的地方。...由此,我们就得到了"找出相似文章"的一种算法:   (1)使用TF-IDF算法,找出两篇文章的关键词;   (2)每篇文章各取出若干个关键词(比如20个),合并成一个集合,计算每篇文章对于这个集合中的词的词频

    1.1K30
    领券