只要你学过数据结构与算法分析,相信你对KMP算法应该都不陌生吧?如果你没听过,不要紧,今天我们就来聊一聊这个算法。建议最好拿一张草稿纸,然后边看边理解,这样更有助于你对它的理解,更能理解它背后的精髓所在,相信你在理解完该算法之后,一定会大喊一声:妙啊!
我们知道在做SEO过程中,写内容是一个非常重要的事情,同时做页面标题优化也是重中之重,这就要求我们利用最简短的文字去覆盖更多的相关关键词,为此,在SEO进阶的道路上,特别是对于百度而言,我们认为你可能有必要去研究一下百度分词算法的相关策略,因此,我们推荐下面这篇相对早期的文章,供大家拓展思维:
基于词典的方法、基于统计的方法、基于规则的方法、(传说中还有基于理解的-神经网络-专家系统)
基于词典的双向匹配算法的中文分词算法的实现。 例子:[我们经常有意见分歧] 词典:[我们,经常,有,有意见,意见,分歧]
中文分词是中文自然语言处理的基础,中文分词的正确率如何直接影响后续的词性标注(也有些词性标注算法不需要事先分词,但标注效果往往比先分词后标注差),实体识别、句法分析、语义分析。常用的分词方法主要有依赖词典的机械分词和序列标注方法。
谷歌4亿英镑收购人工智能公司DeepMind,百度目前正推进“百度大脑”项目,腾讯、阿里等各大巨头也在积极布局深度学习。随着社会化数据大量产生,硬件速度上升、成本降低,大数据技术的落地实现,让冷冰冰的数据具有智慧逐渐成为新的热点。要从数据中发现有用的信息就要用到数据挖掘技术,不过买来的数据挖掘书籍一打开全是大量的数学公式,而课本知识早已还给老师了,着实难以下手、非常头大! 我们不妨先跳过数学公式,看看我们了解数据挖掘的目的——发现数据中价值。这个才是关键,如何发现数据中的价值。那什么是数据呢?比如大家要上网
谷歌4亿英镑收购人工智能公司DeepMind,百度目前正推进“百度大脑”项目,腾讯、阿里等各大巨头也在积极布局深度学习。随着社会化数据大量产生,硬件速度上升、成本降低,大数据技术的落地实现,让冷冰冰的数据具有智慧逐渐成为新的热点。要从数据中发现有用的信息就要用到数据挖掘技术,不过买来的数据挖掘书籍一打开全是大量的数学公式,而课本知识早已还给老师了,着实难以下手、非常头大! 我们不妨先跳过数学公式,看看我们了解数据挖掘的目的——发现数据中价值。这个才是关键,如何发现数据中的价值。那什么是数据呢?比如大家要
中文分词技术是中文自然语言处理技术的基础,与以英语为代表的拉丁语系语言相比,中文由于基本文法和书写习惯上的特殊性,在中文信息处理中第一步要做的就是分词。具体来说,分词就是将连续的字序列按照一定的规范重新组合成词序列的过程。中文分词(Chinese Word Segmentation) 指的就是将一个汉字序列切分成一个一个有意义的词序列。
中文分词 就是将一句话分解成一个词一个词,英文中可以用空格来做,而中文需要用一些技术来处理。 三类分词算法: 1. 基于字符串匹配: 将汉字串与词典中的词进行匹配,如果在词典中找到某个字符串,则识别出一个词。 优点,速度快,都是O(n)时间复杂度,实现简单。 缺点,对歧义和未登录词处理不好。 此类型中常用的几种分词方法有: 1. 正向最大匹配法: 假设词典中最大词条所含的汉字个数为n个,取待处理字符串的前n个字作为匹配字段。若词典中含有该词,则匹配成功,分出该词,然后从被比较字符串的n+1处开始再取n个
在我们生活中的一些场合经常会有一些不该出现的敏感词,我们通常会使用*去屏蔽它,例如:尼玛 -> **,一些骂人的敏感词和一些政治敏感词都不应该出现在一些公共场合中,这个时候我们就需要一定的手段去屏蔽这些敏感词。下面我来介绍一些简单版本的敏感词屏蔽的方法。
串匹配问题是解决许多应用(文本编辑器,数据库检索,C++模板匹配,模式识别等等)的重要技术。
导读:在人类社会中,语言扮演着重要的角色,语言是人类区别于其他动物的根本标志,没有语言,人类的思维无从谈起,沟通交流更是无源之水。
分词技术就是搜索引擎针对用户提交查询的关键词串进行的查询处理后根据用户的关键词串用各种匹配方法进行的一种技术。当然,我们在进行数据挖掘、精准推荐和自然语言处理工作中也会经常用到中文分词技术。
从 2000 年开始学习和使用 Mathematica,《Mathematica 演示项目笔记》作者,发表Wolfram Demonstrations Projects 50 余篇。
中文分词是中文文本处理的一个基础步骤,也是中文人机自然语言交互的基础模块。不同于英文的是,中文句子中没有词的界限,因此在进行中文自然语言处理时,通常需要先进行分词,分词效果将直接影响词性、句法树等模块的效果。当然分词只是一个工具,场景不同,要求也不同。
场景:现在有一个错词库,维护的是错词和正确词对应关系。比如:错词“我门”对应的正确词“我们”。然后在用户输入的文字进行错词校验,需要判断输入的文字是否有错词,并找出错词以便提醒用户,并且可以显示出正确词以便用户确认,如果是错词就进行替换。
第一次学习KMP算法走了不少弯路,下面老高按照自己的学习步骤,总结一下KMP算法的要点,如果有错误或者疑问,欢迎指正!
小程序名字怎么都奇奇怪怪的? 自己怎么也搜不到想要的小程序 比如下面,简直惨不忍睹,如果不是提前知道完整全名,几乎搜不出来。 于是,犀利的网友开始吐槽: 对于一个APP重度使用者来说,小程序意味着一早
前言 中文分词算法是指将一个汉字序列切分成一个一个单独的词,与英文以空格作为天然的分隔符不同,中文字符在语义识别时,需要把数个字符组合成词,才能表达出真正的含义。分词算法是文本挖掘的基础,通常应用于自然语言处理、搜索引擎、智能推荐等领域。 一、分词算法分类 中文分词算法大概分为三大类: 第一类是基于字符串匹配,即扫描字符串,如果发现字符串的子串和词典中的词相同,就算匹配,比如机械分词方法。这类分词通常会加入一些启发式规则,比如“正向/反向最大匹配”,“长词优先”等。 第二类是基于统计以及机器学习的分词方法,
实体:“能够独立存在的,作为一切属性的基础和万物本原的东西”。实体是属性赖以存在的基础,必须是自在的,也就是独立的、不依附于其他东西而存在的。
中文分词是中文自然语言处理的一个非常重要的组成部分,在学界和工业界都有比较长时间的研究历史,也有一些比较成熟的解决方案
给定一个 haystack 字符串和一个 needle 字符串,在 haystack 字符串中找出 needle 字符串出现的第一个位置 (从0开始)。如果不存在,则返回 -1。
生成一个随机字符串(无空格),能否鉴别出这个字符串中是否有自然语言中的单词。比如“ervmothersdclovecsasd”,这个字符串中就存在“mother”和“love”这两个单词。
导读:本文将讲解中文自然语言处理的第一项核心技术——中文分词技术,它是中文自然语言处理非常关键和核心的部分。
KMP乍一听像是某播放器的名字,仔细一看像是看毛片的缩写……但其实,它是取自发明该算法的三个大佬的名称缩写:让我们记住这三位大佬,他们分别是Knuth、Morris、Pratt。
中文分词是中文文本处理的一个基础步骤,也是中文人机自然语言交互的基础模块,不同于英文的是,中文句子中没有词的界限,因此在进行中文自然语言处理时,通常需要先进行分词,分词效果将直接影响词性,句法树等模块的效果,当然分词只是一个工具,场景不同,要求也不同。在人机自然语言交互中,成熟的中文分词算法能够达到更好的自然语言处理效果,帮助计算机理解复杂的中文语言。
参考:https://www.jb51.net/article/144122.htm
前言 中文分词算法是指将一个汉字序列切分成一个一个单独的词,与英文以空格作为天然的分隔符不同,中文字符在语义识别时,需要把数个字符组合成词,才能表达出真正的含义。分词算法是文本挖掘的基础,通常应用于自然语言处理、搜索引擎、智能推荐等领域。 一、分词算法分类 中文分词算法大概分为三大类。 第一类是基于字符串匹配,即扫描字符串,如果发现字符串的子串和词典中的词相同,就算匹配,比如机械分词方法。这类分词通常会加入一些启发式规则,比如“正向/反向最大匹配”,“长词优先”等。 第二类是基于统计以及机器学习的分词方法,
本文介绍了Shell数组的基本概念、操作方法和应用。Shell数组类似于Python和Java中的数组,但语法略有不同。Shell数组可以用于存储多个值,并通过索引访问这些值。数组操作包括定义、获取、添加、修改、删除等。在Shell中,可以使用${}、${arrayName[@]}、${#arrayName[@]}、${#arrayName[*]}、${arrayName[index]}、${#arrayName[index]}、${arrayName[@]:start:length}、${arrayName[@]}、${arrayName[@]/pattern/replacement}等语法进行数组操作。在Shell中,数组操作可以用于字符串替换、文件替换、字符串过滤等场景,是Shell脚本中经常使用的功能。
自然语言处理是使用计算机科学与人工智能技术分析和理解人类语言的一门学科。在人工智能的诸多范畴中,自然语言的理解以其复杂性、多义性成为难度最大也是最有价值的领域之一。
现有分词介绍 自然语言处理(NLP,Natural Language Processing)是一个信息时代最重要的技术之一,简单来讲,就是让计算机能够理解人类语言的一种技术。在其中,分词技术是一种比较基础的模块。对于英文等拉丁语系的语言而言,由于词之间有空格作为词边际表示,词语一般情况下都能简单且准确的提取出来。而中文日文等文字,除了标点符号之外,字之间紧密相连,没有明显的词边界,因此很难将词提取出来。 分词的意义非常大,在中文中,单字作为最基本的语义单位,虽然也有自己的意义,但表意能力较差,意义较分散,而
前言 继上一篇HashMap实现中文分词器后,对Trie Tree的好奇,又使用Trie Tree实现了下中文分词器。效率比HashMap实现的分词器更高。 Trie Tree 简介 Trie Tree,又称单词字典树、查找树,是一种树形结构,是一种哈希树的变种。典型应用是用于统计和排序大量的字符串(但不仅限于字符串),所以经常被搜索引擎系统用于文本词频统计。它的优点是:最大限度地减少无谓的字符串比较,查询效率比哈希表高。 性质 它有3个基本性质: 根节点不包含字符,除根节点外每一个节点都只包含一个字符。
上面方法虽然可行,但是当字符串长度特别长的时候耗时比较久,性能上有一些缺陷,这时候我们可以利用前缀字典进行优化,提高代码执行效率
可以用${}分别替换得到不同的值: ${file#*/}:删掉第一个 / 及其左边的字符串:dir1/dir2/dir3/my.file.txt ${file##*/}:删掉最后一个 / 及其左边的字符串:my.file.txt ${file#*.}:删掉第一个 . 及其左边的字符串:file.txt ${file##*.}:删掉最后一个 . 及其左边的字符串:txt ${file%/*}:删掉最后一个 / 及其右边的字符串:/dir1/dir2/dir3 ${file%%/*}:删掉第一个 / 及其右边的
root@x:~# echo $x|awk -F"//" '{print $1}'
——老子
原文:https://www.cnblogs.com/rustling/p/9833174.html
首先了解kmp算法是干嘛的,它的作用是进行一个模式匹配,即在一个字符串中寻找是否存在某一个子串,比如在aabbccabc这个主串中是否存在abc这个模式串,并且输入他们匹配时,在主串的位置,如上例中,就应该输出的是“在第7个位置他们进行匹配”。 这就是kmp算法的作用。
上一篇文章提到了词向量的相关知识,可如何用计算机对一篇文章或者一些句子进行分词,从而让计算机更好理解句子呢?
中文分词算法概述: 1:非基于词典的分词(人工智能领域) 相当于人工智能领域计算。一般用于机器学习,特定领域等方法,这种在特定领域的分词可以让计算机在现有的规则模型中,推理如何分词。在某个领域(垂直领域)分词精度较高。但是实现比较复杂。 例:比较流行的语义网:基于本体的语义检索。 大致实现:用protege工具构建一个本体(在哲学中也叫概念,在80年代开始被人工智能),通过jena的推理机制和实现方法。 实现对Ontology的语义检索。 Ontology语义检索这块自己和一朋友也还在琢
随着网上购物的流行,各大电商竞争激烈,为了提高客户服务质量,除了打价格战外,了解客户的需求点,倾听客户的心声也越来越重要,其中重要的方式 就是对消费者的文本评论进行数据挖掘.今天通过学习《R语言数据挖掘实战》之案例:电商评论与数据分析,从目标到操作内容分享给大家。 本文的结构如下 1.要达到的目标 通过对客户的评论,进行一系列的方法进行分析,得出客户对于某个商品的各方面的态度和情感倾向,以及客户注重商品的哪些属性,商品的优点和缺点分别是什么,商品的
在做用户 query 理解的过程中,有许多需要使用词典来”识别”的过程。在此期间,就避免不了使用 Trie 树这一数据结构。
二分图又称作二部图,是图论中的一种特殊模型。 设G=(V,E)G=(V,E)是一个无向图。如顶点集VV 可分割为两个互不相交的子集,并且图中每 条边依附的两个顶点都分属两个不同的子集。则称图GG 为二分图。我们将上边顶点集合称 为XX 集合,下边顶点结合称为YY 集合,如下图,就是一个二分图。
ss.strip()参数为空时,默认去除ss字符串中头尾\r, \t, \n, 空格等字符;参数为某个字符时,可以去掉头尾指定字符噢,例如:
版权声明:本文为博主原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。
Linux shell ${}简单用法 [转]http://linux.chinaunix.net/techdoc/develop/2007/05/05/956956.shtml 为了完整起见,我这里再用一些例子加以说明 ${ } 的一些特异功能: 假设我们定义了一个变量为: file=/dir1/dir2/dir3/my.file.txt 我们可以用 ${ } 分别替换获得不同的值: ${file#*/}:拿掉第一条 / 及其左边的字符串:dir1/dir2/dir3/my.file.txt
文本挖掘模型结构示意图 1. 分词 分词实例: 提高人民生活水平:提高、高人、人民、民生、生活、活水、水平 分词基本方法: 最大匹配法、最大概率法分词、最短路径分词方法
和其它 Linux 的 DE 一样,macOS 也支持在“系统偏好设置”中设置 HTTP 代理、HTTPS 代理,但是 macOS 并不会在终端(Terminal、iTerm)的 shell 中自动生效系统代理配置。为了方便日常使用,我决定好好研究一下 macOS 的系统代理。
中文分词算法是指将一个汉字序列切分成一个一个单独的词,与英文以空格作为天然的分隔符不同,中文字符在语义识别时,需要把数个字符组合成词,才能表达出真正的含义。分词算法是文本挖掘的基础,通常应用于自然语言处理、搜索引擎、智能推荐等领域。
领取专属 10元无门槛券
手把手带您无忧上云