首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

如何让我的设备振动?

这可能是一个有趣的问题,但需要更多的上下文才能给出准确的答案。在云计算领域,设备通常不会直接与云服务进行通信。相反,它们通过互联网连接到云服务。因此,设备振动的问题可能涉及到应用程序或服务的某些方面。

然而,如果您希望设备能够振动,您可以尝试使用一些振动传感器和应用程序来控制设备。这些传感器可以检测到设备的振动,并将其转换为数字信号,应用程序可以处理这些信号并控制设备的振动。

此外,您还可以使用一些云服务来远程控制您的设备。例如,您可以使用Amazon Web Services(AWS)或Microsoft Azure等云服务来控制您的设备。这些服务通常提供了一些API和SDK,以便您可以使用它们来控制您的设备。

总之,要让您的设备振动,您需要使用一些传感器和应用程序来控制设备,或者使用一些云服务来远程控制您的设备。

页面内容是否对你有帮助?
有帮助
没帮助

相关·内容

科学瞎想系列之一一二 NVH那些事(15)

上一期讲了声波的一些传播特性,本期讲一讲声波的起源。众所周知,振动产生噪声,也就是说声波是由振动引起的,那么自然就会提出一个问题——振动和噪声的关系问题。即在介质的某处,若已知质点的振动,如何推算和评估所产生的噪声,或已知某处的噪声如何得知该点的振动。 1 振动与噪声的定量换算 我们知道,描述振动的特征量包括频率、振动位移、振动速度和振动加速度;描述噪声的特征量包括频率、声压、声强和声功率以及反映声音响度的声压级、声强级、声功率级等声级指标,振动作为噪声之母,振动和因之引起的噪声的频率自然就是一样的,这是它们之间的“遗传代码” 是它们的DNA,工程实践中也经常会用噪声的频谱来分析寻找振动源,这个不用换算。这里主要讲的是振动速度、加速度和噪声的声压、声强之间的换算关系,现就平面声波做一介绍。 假设介质中存在一个无穷大平面的振动,我们可以把它看作是一个无穷大平面的活塞在往复运动(振动),其振动的频率为f,振动的位移随时间按正弦规律变化,就会在介质中产生一个平面声波,设声波沿x轴方向传播,其波动方程为: y=Y•sin(ωt-Kx) ⑴ 式中:y为在x处的质点振动位移;Y为振幅;x为质点位置;ω为振动角频率,ω=2πf=2π/T,T为振动的周期;系数K=2π/λ,λ为声波的波长。则声速: C=ω/K=λ•f ⑵ 而振动速度为: y′=Эy/Эt=ω•Y•cos(ωt-Kx) ⑶ 振动速度的幅值: Y′=ω•Y ⑷ 由⑵、⑷式可见,振动速度和声速是两码事,二者不能混淆。振动形成的压强(声压)为: p=-E•ΔV/V=-E•Эy/Эx ⑸ 式中:E为介质的弹性模量,即介质中的应力与应变之比 ,它是材料的固有参数;ΔV/V为介质因受压力的变化而产生的体积变化率,数值上ΔV/V=Эy/Эx。 将⑴式代入⑸式得: p=E•K•Y•cos(ωt-Kx) =Pm•cos(ωt-Kx) ⑹ 式中:Pm=E•K•Y为最大声压。 我们知道,声强为单位面积上的声功率,而功率等于力与速度乘积,即声强等于单位面积上的压力(声压)乘以质点的振动速度,即声强: i=p•y′ =ω•E•K•Y²•cos²(ωt-Kx) ⑺ 平均声强为: I=(1/2)•ω•E•K•Y² =(1/2)•ω•Pm²/(E•K) ⑻ 将声速C=(E/ρ)^(1/2)代入⑻式,得: I=(1/2)•Pm²/(ρ•C) = P²/(ρ•C) ⑼ 式中:P为声压的有效值,即方均根值;ρ为介质的密度;ρ•C为介质的声学特性阻抗,20℃下空气的ρ•C=408 kg/(m²•s)。 综合以上各式,可得无穷大平面声波声强与振动的关系为: I=(1/2)•ω•E•K•Y² =(1/2)•2πf•C•ρ•(2π/λ)•Y² =2ρCπ²f²Y² =816π²f²Y² ⑽ 由⑽式可见,无穷大平面声波的声强与振动速度(f•Y)的平方成正比,由于声强是指单位面积上的声功率,代表了声波传递的能量,这就得出了我们前面所说的,振动速度是反映伴振动的能量。需要特别强调一下,⑽式是基于无穷大平面振动推导得到的振动与噪声的关系,适用于平面型辐射器,例如:当电机的尺寸远大于声波波长时,就可以把电机看作是一个平面型辐射器。对于其它类型的声波辐射器(如中小型电机)不适用,需要进行一定的修正(后续文章会详述),但⑽式是基础,是一个非常重要的公式,希望宝宝们牢记,后面还会经常用到。 这样枯燥的推导可能宝宝们很难直观感受多大的振动能够引起多大的噪声,为此我们举个例子来直观感受一下: 设一个振幅为Y=10^(-10)米、f=1000Hz的振动,则可以引起的声强为: I=816•π²•1000²•10^(-20) =8.05*10^(-11) 瓦/米² 其声强级为: Li=10•lg[8.05*10^(-11)/10^(-12)]=19.05dB。 也就是说当空气的振幅为1/10纳米(相当于分子直径级别的振幅)时,就会产生19.05dB的噪声,人耳可以清晰地听到。对于电机机壳的振动,通常振幅在微米级,假设是1微米吧,如果频率仍然是1000Hz,那么产生的声强为8.05*10^(-3)瓦/米²,对应的声强级可达99dB(A),99分贝是个什么概念啊,大概是在歌舞厅距离音响1米处的噪声,达到了非常吵闹的环境级别,我国环境标准规定在这样的环境中,每天不得超过一刻到半个小时,否则经过二三十年的长期暴露,会严重损伤听觉!由此可见只要频率较高(中频),微小的振动都会引起强烈的噪声。 2 振动和噪声的关系 上面

02
  • 用皮肤“听”音乐,网友戴上这款装备听音乐会:仿佛住在钢琴里

    羿阁 发自 凹非寺 量子位 | 公众号 QbitAI 贝多芬失聪后继续创作的故事相信大家都听过。 《致爱丽丝》、《英雄交响曲》、《田园交响曲》等等作品都堪称经典。 那你有没有想过,他究竟是如何做到的? 初中物理课上,老师告诉我们:失去听力的贝多芬,用牙咬住木棒一端,另一端顶在钢琴上,以此感受钢琴的震动,坚持创作。 而现在,科学家的最新研究恰好也证实了这一点:音乐不仅可以听,还能摸! 甚至,聋人音乐家们还能通过触觉,理解音乐传递的复杂情感。 听不见也能享受音乐 对于听力正常的人来说,当特定频率的振动(20

    03

    技术猿 | 自动化设备的常用故障诊断方法

    常用的简易状态监测方法主要有听诊法、触测法和观察法等。 听诊法: 设备正常运转时,伴随发生的声响总是具有一定的音律和节奏。只要熟悉和掌握这些正常的音律和节奏,通过人的听觉功能就能对比出设备是否出现了重、杂、怪、乱的异常噪声,判断设备内部出现的松动、撞击、不平衡等隐患。用手锤敲打零件,听其是否发生破裂杂声,可判断有无裂纹产生。 电子听诊器是一种振动加速度传感器。它将设备振动状况转换成电信号并进行放大,工人用耳机监听运行设备的振动声响,以实现对声音的定性测量。通过测量同一测点、不同时期、相同转速、相同工况

    04

    一种基于EEG和sEMG的假手控制策略

    针对残臂较短或残臂上肌电信号测量点较少的残疾人使用多自由度假手的需求, 研究人员提出一种基于脑电信号(Electroen-cephalogram, EEG) 和表面肌电信号(Surface electromyogram signal, sEMG) 协同处理的假手控制策略. 该方法仅用1 个肌电传感器和1 个脑电传感器实现多自由度假手的控制. 实验中,研究人员使用1 个脑电传感器测量人体前额部位的EEG, 从测量得到的EEG中提取出眨眼动作信息并将其用于假手动作的编码,同时使用1 个肌电传感器测量手臂上的sEMG。研究人员针对肌电信号存在个体差异和位置差异的问题, 采用自适应方法实现手部动作强度的估计,并采用振动触觉技术设计触觉编码用于将当前假手的控制指令反馈给佩戴者, 从而实现EEG 和sEMG 对多自由度假手的协同控制.研究人员通过实验验证了该控制策略的有效性。

    01

    从灯泡振动中恢复声音的侧信道攻击

    本文中介绍了Lamphone,是一种用于从台灯灯泡中恢复声音的光学侧信道攻击,在 COVID-19 疫情期间,这种灯通常用于家庭办公室。本研究展示了灯泡表面气压的波动,它响应声音而发生并导致灯泡非常轻微的振动(毫度振动),可以被窃听者利用来被动地从外部恢复语音,并使用未提供有关其应用指示的设备。通过光电传感器分析灯泡对声音的响应,并学习如何将音频信号与光信号隔离开来。本研究将 Lamphone 与其他相关方法进行了比较,结果表明,与这些方法相比Lamphone可以以高质量和更低的音量恢复声音。最后展示了窃听者可以应用Lamphone,以便在受害者坐在/工作在 35 米距离处的桌子上,该桌子上装有带灯泡的台灯时,可以恢复虚拟会议声级的语音,并且具有相当的清晰度。

    04

    这玩意儿不赖!——聊聊HART协议(4)

    2007年9月发布了HART 7版本,增加了无线网络作为可替换常规4~20mA回路的物理层。当使用HART 7定义的无线网络进行数据传输时,就是所谓的WirelessHART。WirelessHART是一种针对过程自动化应用的无线网状网络通信协议,推出的目的是让用户在保持现有设备、工具和系统一致性的基础上,为HART协议增加无线功能。2008年9月19日,WirelessHART通信规范获得国际电工标准委员会IEC的认可,成为一种公共、可用的规范(IEC/PAS 62591Ed.1),并于2013年成为中国国家标准。作为开放式的可互操作无线通信标准,WirelessHART用于满足流程行业对于实时工厂应用中可靠、稳定和安全的无线通信需求。

    01

    干货 | 新能源发电设备关键部件健康评估与失效预测建模分析研究

    第一部分是这个项目背景与需求分析。大背景还是根据中国提出的碳中和碳达峰目标,目前我们也看到,风电装机量明显提升,那么风力发电是加快我国能源消费结构转型的一个重要的选择。对于市场前景分析,我们发现,随着新能源市场的持续增长,可再生能源的装机目前已经历史性地超过了煤电装机。随着风力装机容量的大幅度的提高,对于关键部件的故障对设备的影响也尤为严重。随着智能化数字化以及云技术的发展,风力发电设备的故障检测和健康评估领域出现明显的智能化发展趋势。通过运用大数据、机器学习等方法,对于风力发电设备进行实时检测以及故障,预计能够有效提高设备可靠性和可用性。那么对于用户需求来分析,我们会发现风力发电机组大多数都在野外十几米的高空,经常面临着变工况、变风载荷、高温差等一系列的情况,我们采用大数据以及人工智能的技术,通过数据驱动的方式来建立新能源关键设备的检测和故障预警的模型,能够提升新能源设备健康管理的水平。

    02
    领券