首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

如何获得给定地址的总标记EGLD?

要获取给定地址的总标记EGLD(假设这里指的是某种加密货币或代币的总余额),通常需要使用区块链浏览器或相应的API服务。以下是基础概念和相关步骤:

基础概念

  • 区块链浏览器:一个可以查询区块链数据的工具,它允许用户查看交易记录、地址余额等信息。
  • API服务:应用程序接口,允许开发者通过编程方式访问区块链数据。

相关优势

  • 实时性:可以获取最新的区块链数据。
  • 准确性:直接从区块链网络获取数据,避免了第三方服务的潜在错误。
  • 灵活性:可以通过API自定义查询需求。

类型

  • 公共区块链浏览器:如Etherscan(针对以太坊),提供对所有用户的公开查询。
  • 私有区块链浏览器:针对特定区块链网络,可能需要权限才能访问。
  • API服务:如Infura、Alchemy等,提供编程接口供开发者使用。

应用场景

  • 加密货币钱包:用于显示用户地址的余额。
  • 交易所:用于管理用户的资产。
  • 数据分析:用于市场分析或安全审计。

如何获取总标记EGLD

假设我们要查询的是EGLD代币在某个地址的总余额,以下是步骤:

  1. 找到区块链浏览器或API服务
    • 对于EGLD代币,可以使用专门针对Elrond网络的区块链浏览器,如Elrond Scan(https://scan.elrond.com/)。
  • 查询地址余额
    • 打开Elrond Scan网站。
    • 在搜索框中输入目标地址。
    • 导航到该地址的详细页面。
    • 查找EGLD代币的余额信息。
  • 使用API服务(如果需要自动化或集成到应用中):
    • 注册并获取API密钥。
    • 使用API文档中的端点来查询地址余额。例如,Elrond的API可能有一个端点类似于:
    • 使用API文档中的端点来查询地址余额。例如,Elrond的API可能有一个端点类似于:
    • 使用编程语言(如Python)发送请求并解析响应。

示例代码(Python)

代码语言:txt
复制
import requests

address = "your_address_here"
api_key = "your_api_key_here"
url = f"https://api.elrond.com/account/{address}/balance/EGLD"

headers = {
    "Authorization": f"Bearer {api_key}"
}

response = requests.get(url, headers=headers)
if response.status_code == 200:
    balance = response.json().get("balance")
    print(f"Total EGLD balance: {balance}")
else:
    print("Failed to get balance")

参考链接

  • Elrond Scan: https://scan.elrond.com/
  • Elrond API Documentation: https://dev.elrond.com/

常见问题及解决方法

  • API请求限制:如果遇到请求频率限制,可以尝试使用更高级别的API计划或增加请求间隔。
  • 地址格式错误:确保输入的地址格式正确,符合Elrond网络的地址规范。
  • 网络问题:检查网络连接,确保能够访问Elrond网络和API服务。

通过以上步骤,你应该能够获取给定地址的总标记EGLD余额。

页面内容是否对你有帮助?
有帮助
没帮助

相关·内容

使用PyTorch实现简单AlphaZero算法(2):理解和实现蒙特卡洛树搜索

从根节点开始选择最佳边,直到到达树末端(表示游戏结束终端节点/尚未探索节点,例如上图中标记为None节点)。 但“最佳边”是什么意思呢?应该如何遍历树?...动作值Q(s, a)表示在状态s下通过动作a获得平均奖励。一开始,Q(s, a)是零。这个action-value代表我们在任何给定时间对奖励函数了解,因此它与使用有关。...这个超参数典型值是2。 现在已经对如何获得PUCT(s, a)有了一定了解,让我们继续MCTS中选择步骤。...这里展开表示通过初始化选定节点状态来扩展树。这种新状态是从游戏规则中获得。如果它是一个终端节点,我们将状态保留为 None 并在节点中设置一个标志,将其标记为带有获胜者信息终端节点。...回溯 在对展开节点进行评估之后,还需要更新从根节点到展开节点所有节点Q值(由奖励值和访问次数实现)。这被称为MCTS回溯(Backup)步骤。

86420

中文预训练模型!| 哈工大 && 科大讯飞 提出多任务预训练模型LERT(含源码)

在每个输入标记获得这些语言标签之后,可以将它们视为用于预训练弱监督标签,从而进入预训练阶段。...每个输入标记都被投影到其语言特征(POS、NER和DEP),使用语言分析中描述方法对其进行标注。具体来说,给定表示 \tilde{H}^{m} ,使用全连接层将其投影到每个任务语言标签中。...模型整个训练损失函数如下所示:  直觉上,掩码语言模型任务是所有子任务中最重要一个。然而,如何决定每个语言任务比例因子 λ_i 呢?...从这些语言特征来看,它们并不是完全等价。NER特征依赖于POS标记输出,而DEP特征同时依赖于POS和NER标记。...在训练步数1/2之后,训练损失将变为一下公式:  其中所有任务对损耗贡献相等。这样,POS特征学习速度最快,其次是NER和DEP,通过经验发现这个策略性能更好,并且符合直观想法。

1.6K10
  • 开发 | 干货满满,阿里天池CIKM2017 Rank4比赛经验分享

    在这次比赛中,来自中国科学院怀北村明远湖队(队员Zhang Rui, Qiao Fengchun, Guo Ran)在GitHub上分享了自己代码和方法,他们在第一阶段获得第三名,第二阶段获得第四名...每个雷达图覆盖以目标站点为中心,面积为101 * 101平方公里区域。该区域被标记为101×101格,目标站点位于中心,即(50,50)。...数据集中包含真实雷达图和气象观测中心收集到目标站点降水量。 比赛任务是预测在未来1-2个小时内每个目标站点降雨量。 ?...在选出有代表性数据之后,通过每两个时间间隔之间数据偏差值算出移动方向,最终基于给定阈值统计不同移动方向数目,按照数目最多移动方向的确定最终风向。 ?...运用工具 Python 3.6 Keras XGBoost Sklearn 代码地址 https://github.com/zxth93/CIKM_AnalytiCup_2017

    1.3K40

    华为OD机试 最优资源分配

    本期题目:最优资源分配 题目 某块业务芯片最小容量单位为1.25G,容量为M * 1.25G,对该芯片资源编号为1,2, ..., M。该芯片支持3种不同配置,分别为A、B、C。...给定板卡上芯片数量N、每块芯片容量M、用户按次序配置后,请输出芯片资源占用情况,保证消耗芯片数量最少。...资源分配规则:按照芯片编号从小到大分配所需资源,芯片上资源如果被占用标记为1,没有被占用标记为0。...备注 用户配置是按次序依次配置到芯片中,如果用户配置序列中某个配置超过了芯片容量,丢弃该配置,继续遍历用户后续配置。...题解地址 ⭐️ 华为 OD 机考 Python https://dream.blog.csdn.net/article/details/129107954 ⭐️ 华为 OD 机考 C++ https:

    36530

    概率图模型笔记(PART III)条件随机场简介

    例如,在标注问题中,X表示输入观测序列,Y表示对应输出标记序列。 linear-CRF参数化形式 那么对于linear-crf,我们如何将其转换成可以学习机器学习模型呢?...特征函数 第一类是状态特征,定义在Y节点上特征函数,这类特征函数只和当前节点有关,记为: 其中L是定义在该节点节点特征函数个数,i是当前节点在序列位置。2....第二类是转移特征,定义在边上(Y上下文)局特征函数,这类特征函数之和当前节点和上一个节点有关,记为: 其中K是定义在该节点局部特征函数个数,i是当前节点在序列位置。...为此我们定义一个m x m矩阵M,m为y所有可能状态取值个数: 同时引入起点和终点标记 ,这样标记序列y非规范化概率可以通过n+1个矩阵元素乘积得到: 其中Z(x)为规范化因子。...维特比算法 学习问题 给定训练数据集X和对应标记序列Y,K个特征函数fk(x,y),需要学习linear-CRF模型参数wk和条件概率Pw(y|x) 梯度下降法,牛顿法,拟牛顿法,迭代尺度法 其中前两个问题属于

    1.3K10

    iOS iOS 地图与定位开发系列教程

    除了使用GPS来获取当前位置信息外,iPhone也可以基于WiFi基站和无线发射塔来获得位置信息。GPS精度最高,可以精确到米级别,但是也最耗电。...; 3、支持在地图上做标记(比如标记北京天安门广场); 4、 把一个位置解析成地址(比如我在水立方,想要知道确切地址信息)。...MKMapView类主要是完成下述功能: 1、显示地图,比如:显示北京市地图; 2、提供多种显示方式,比如标准地图格式,卫星地图等; 3、支持地图放大缩小; 4、支持在地图上做标记,比如标记天安门广场...这就是MKRecerseGeocoder.给定一个位置信息,这个类可以返回相应地址信息。...地理编码:根据给定地名,获得具体位置信息(比如经纬度、地址全称等) 反地理编码:根据给定经纬度,获得具体位置信息 CLPlacemark CLPlacemark: 详细地址位置信息,包括如下主要属性

    2.3K30

    标题:重磅 | ICML 2017 开幕,华人再获最佳论文奖(附历届引用量最高论文解读)

    根据 jeffhuang 统计,华人首次获得 ICML 最佳论文奖可以追溯到 2010 年,之后 ICML 2014 最佳论文奖则被北京大学 Jian Tang 拿下,而 ICML 2016 三篇最佳论文之一...在本文中,我们利用影响函数法(稳健统计中一种经典方法)追踪模型预测,以此识别出最可能导致给定预测训练点。...在先前设计 SVM 求解算法中,迭代次数也以 1/λ 线性增加,其中 λ 为SVM正则化参数。对于线性核函(linear kernel)来说,我们方法运行时间为 ?...这些一般任务可能与原来训练任务大不相同,而且用来训练或调整深度卷积架构适应新任务标记数据或未标记数据也可能不足。...论文摘要:本文探究是使用未标记数据构建特定类别的高级特征检测器。例如:仅使用未标记图像,是否能训练一个面部特征检测器?

    88540

    强化学习基础知识和6种基本算法解释

    监督学习(SL):关注在给定标记训练数据情况下获得正确输出 无监督学习(UL):关注在没有预先存在标签情况下发现数据中模式 强化学习(RL):关注智能体在环境中如何采取行动以最大化累积奖励 通俗地说...这也与监督学习形成了对比,监督学习输出只是一个单一决策或预测,比策略更简单。 强化学习目标是通过优化所采取行动来最大化累积奖励。和婴儿一样,我们不都想从生活中获得最大累积利益吗?...我们希望智能体了解到最佳行动或路线是通过采取行动A2-A1-A1来走向下-右-右,并获得+1+1+1+100奖励。...以一辆自动驾驶汽车为例,如果汽车在一次试验中从网格 (1, 1) 开始时,未来奖励为 +100。在同一次试验中,汽车重新访问该网格,从该点开始未来奖励是+300。...我一直觉得强化学习很有趣,因为它阐明了人类如何学习以及我们如何将这些知识传授给机器人(当然也包括其他应用,如自动驾驶汽车、国际象棋和Alpha Go等)。

    90830

    常驻型计算机病毒工作原理,复习计算机病毒分析与防范

    ,扇区,柱面号 四字节:线性寻址方式下分区相对扇区地址 四字节:该分区占用 扇区数 PE文件结构 MZ文件头(4D5A),DOS插桩程序,NT映像头(Signature、FileHeader、OptionalHeader...如何实现重定位call跳到下一条指令,使下一条指令感染后实际地址进栈。 用pop或mov exx,[esp] 去除栈顶内容,这样就得到了感染后下一条指令实际地址。...感染PE文件方法/如何实现添加新节判断MZ、PE、感染标记 获得数据目录Directory个数(每个8字节) 获得节表起始位置(Directory偏移地址+目录字节数)、最后节表末尾偏移(节表起始位置...7c00处继续执行启动程序 病毒如何常驻内存 将自身复制到内存高端(10 0000H之后),修改内存容量标志单元(0000:0413处),减去病毒长度,使得常驻内存;然后将原int 13h磁盘中断服务程序中断向量保存...GetProcAddress通过DLL地址和API函数名获得API函数地址。 木马结构 木马软件一般由木马配置程序、控制端程序和被控端程序三部分组成。

    46420

    implicature语言学定义_论文用书上内容查重吗

    将外部知识整合进语言表征模型具有两个挑战:1)结构化知识编码:对于给定文字,如何为语言表征模型有效地抽取和编码与KG相关信息实体是十分重要问题;2)异构信息融合:语言表征预训练过程与知识表征过程略有不同...如何设计一个特殊预训练任务来融合词汇、语义和知识信息是另一个挑战。   ...具体来说,给定一个序列 和其对应实体序列 ,文本编码器先对每个tokentoken嵌入、段嵌入、位置嵌入求和,获得输入嵌入。...预训练损失包括dEA、MLM和NSP损失(注:相较于BERT增加了dEA)。 3.5 对特定任务进行微调 图3 对于特定任务调整输入序列。...最直接方法是将池化层用于给定实体引用最终输出嵌入,并将用于分类引用嵌入连接作为给定实体对表示。

    66820

    CIKM2022: LTE4G:图神经网络中长尾专家

    2.1 预训练阶段 为了获得良好初始节点嵌入,本文首先在原始图上预训练GCN编码器以获得节点嵌入。...虽然上述损失可以在每个专家负责类别以及节点度上提供准确分类结果,但剩下挑战是但剩下挑战是如何利用专家知识来获得最终节点分类结果。...其损失可定义为: 其中 ,e和E分别表示当前epoch以及训练epoch。...,因此推理阶段主要挑战是如何确定测试节点应该发送给头类还是尾类学生。...计算类原型最简单方法是计算训练数据中属于每个类标记节点预训练嵌入平均值,可表示为: 在得到所有pc之后,计算给定测试节点嵌入与类原型之间相似性,以确定相似度最大类c: 其中sim(

    56030

    AlphaGo背后力量:蒙特卡洛树搜索入门指南

    ,换句话说:在游戏任何终结状态下,所有玩家获得总和等于零。...为了限制博弈树大小,仅访问被展开状态,未被展开状态被标记为灰色。...在上图井字棋博弈树(部分展示)例子中: 在顶部,你可以看到树根节点,其表征了井字棋博弈初始状态,即空白棋盘(标记为绿色); 任何从一个节点向另一个节点转换被称为一个行动; 井字棋分支因子是变化...如何选择访问下一个子节点? 什么是模拟? 什么是反向传播? 反向传播回统计数据是什么,在展开博弈树结点更新是什么? 最后行动策略到底是如何选择?...换句话说,当你查看任意节点统计数据时,这两个值将反映该节点潜在价值(模拟奖励)和它被探索程度(访问次数)。

    1.5K50

    听GPT 讲Go源代码--mbitmap.go

    markBitsForAddr函数接收一个地址作为参数,然后根据该地址所处内存块信息,返回该内存块标记位图。具体过程如下: 首先,该函数会根据给定地址计算出内存块起始地址和块大小。...具体来说,markBitsForBase函数会根据参数给定地址(baseAddr)和内存大小(n)计算出该内存块在位图中起始位置和结束位置,然后依次为每个位图标记该内存块状态。...最后,该函数返回该在堆上偏移量对应heapBits指针。 通过这个函数,我们可以获得一个指向该地址所在堆页heapBits指针,以及该地址在堆页中偏移量。...dumpGCProg dumpGCProg函数是用于打印GC程序函数。GC程序是指在垃圾回收过程中解释指令。它们告诉GC运行时哪些对象需要收集,如何扫描它们,以及如何回收空间。...通过这种方式,getgcmask函数获得了指向GC标记指针,从而能够进行垃圾回收。 总之,getgcmask函数是用于获取指向GC标记指针函数,它在垃圾回收期间起着重要作用。

    22120

    历史首次!华人博士获IEEE THMS 汇刊最佳期刊论文奖

    论文地址:https://ieeexplore.ieee.org/document/9078047 获奖论文介绍 1.   ...基于决策树分类器是最快模态演化方法。最后,Ada-HAR 系统可以实时监控人类活动,无论方向如何智能手机。...然而,许多研究通过求助于给定 HAR 系统开发适当任务到广泛启发式知识。它们适用于实验室或通过身体固定移动控制良好情况设备。...它是一种无监督在线学习算法,不需要获得真正标签。除了自适应算法外,使用 Hk-mC 算法自动标记方法是提高原始信号标记效率另一个原始成果。...图 8:ADA-HAR 系统五种 ML 算法最终精度和测试时间对比 未来研究者将考虑更多活动,甚至在更复杂情况下进行挑战。此外,该研究将在各种可穿戴设备上进行验证,以提高其识别能力。

    77010

    Python 最常见 120 道面试题解析

    Web Scraping - Python 面试问题 如何使用我已经知道 URL 地址本地保存图像? 你需要从 IMDb 前 250 电影页面中删除数据。它应该只有字段电影名称,年份和评级。...数据分析 - Python 面试问题 什么是 Python 中 map 函数? python numpy 比列表更好吗? 如何在 NumPy 数组中获得 N 个最大值索引?...确定通过切割杆和销售件可获得最大值。 给定两个字符串str1和str2以及可以在str1上执行操作。...给定成本矩阵成本[] []和成本[] []中位置(m,n), 将一个集合划分为两个子集,使得子集和差异最小 给定一组非负整数和一个值和,确定是否存在给定集合子集,其总和等于给定总和。...HackerRank问题算法DP 给定距离 dist,计算用1,2和3步覆盖距离方式 在字符板中查找所有可能单词 广度优先搜索遍历 深度优先搜索遍历 在有向图中检测周期 检测无向图中循环 Dijkstra

    6.3K20

    人人都能搞定大模型原理 - 神经网络

    该感知机具有324(18×18)个输入,每个输入对应于网格中一个像素强度,同时每个输入都有自己权重。那么我们如何为一个给定任务准确地设定正确权重和阈值呢?...原创声明,文章原创地址:人人都能搞定大模型原理 - 神经网络03、感知机学习算法在训练时,给定学习系统一个样本,它就产生一个输出,然后在这时给它一个“监督信号”,提示它此输出与正确输出有多大偏离,然后...每个样本都由人来标记其类别——此处为“8”和“非8”两个类别,这些标记将被用作监督信号。...接下来,将感知机输出和人类标记正确答案(“8”或者“非8”)做比较。...都在电脑普及后获得了新提升。

    15710

    使用Tensorflow对象检测在安卓手机上“寻找”皮卡丘

    为了得到更好结果,我试图从图像中获得不同角度和形状皮卡丘,但老实讲,皮卡丘是一个不存在黄色长耳小老鼠,所以很难找到大量合适图像。 ?...一些被使用图像 一旦你获得了所有的图像,下一步就是对它们进行标记。这是什么意思? 因为我们在做对象检测,所以我们需要一个关于物体到底是什么基本事实。...一旦你对所有图像进行了标记,你就会注意到你有一个名为“annotations”目录,其中有许多XML文件用来描述每个图像边框。...每次训练产生一个新检查点时,评估工具将使用给定目录中可用图像进行预测(在我例子中,我使用了来自测试集中图像)。...在开始时候,我提供了一些关于这个库背景信息以及它是如何工作,接下来是关于如何标记、处理和图像来生成数据集指南。后来,我把注意力集中在如何进行训练上。

    2.1K50

    南洋理工 & 清华 & 伦敦帝国 & 西湖大学开源 MeshAnything V2 | AMT 技术提升网格生成性能和效率 !

    显然, 包含大量冗余信息,因为每个顶点都出现在与它属于脸相等次数中。 为了解决这个问题,作者提出了相邻网格标记化(AMT)方法,以获得比先前方法更紧凑且结构良好 。...与(Chen等人,2024b)方法主要区别在于作者如何获得。与(Chen等人,2024b)中使用网格标记化方法不同,作者使用新提出相邻网格标记化(AMT)处理,并获得更紧凑和高效序列。...最后,依次将坐标标记序列与特殊标记&结合,获得transformer输入网格标记序列。正如3.1节中所述,是否使用VQ-VAE并不影响AMT应用和有效性。...每个GPU批处理量为8,从而批处理量为256。 Qualitative Experiments 作者提出了MeshAnything V2定性结果。...对于每个样本,作者用作者方法获得标记序列长度除以前方法获得标记序列长度,然后将结果平均以确定AMT平均减少标记序列长度比例。

    13910

    【机器学习 | 开山篇】打造坚实基础、Kaggle 登榜之路

    ‍♂️ 个人主页: @AI_magician 主页地址: 作者简介:CSDN内容合伙人,全栈领域优质创作者。 ‍景愿:旨在于能和更多热爱计算机伙伴一起成长!!‍ ‍...如何对相应数学模型参数进行求解。 如何根据实际问题提出评估方案,对应用数学模型进行评估,看是否解决了实际问 题。...半监督学习适用于当我们难以获得大量已标记样本时,在少量已知结果下需要更好泛化能力时,或者想要充分利用可获取到未标签数据时。...区别和作用: 区别: 监督学习需要明确指定输入特征与输出目标之间对应关系,而非监督和半监督方法不依赖于事先给定目标变量。 非监督学习主要关注数据内部结构,而监督和半监督学习更侧重于预测任务。...选择何种方法取决于你想要解决问题类型以及可获得数据。 到这里,如果还有什么疑问 欢迎私信博主问题哦,博主会尽自己能力为你解答疑惑

    14110
    领券