首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

如何用pytorch评估和获得前馈神经网络的精度

PyTorch是一个流行的深度学习框架,可以用于构建和训练前馈神经网络(Feedforward Neural Network)。评估和获得前馈神经网络的精度可以通过以下步骤实现:

  1. 导入必要的库和模块:
代码语言:txt
复制
import torch
import torch.nn as nn
import torch.optim as optim
  1. 定义前馈神经网络模型:
代码语言:txt
复制
class FeedforwardNN(nn.Module):
    def __init__(self, input_size, hidden_size, num_classes):
        super(FeedforwardNN, self).__init__()
        self.fc1 = nn.Linear(input_size, hidden_size)
        self.relu = nn.ReLU()
        self.fc2 = nn.Linear(hidden_size, num_classes)
    
    def forward(self, x):
        out = self.fc1(x)
        out = self.relu(out)
        out = self.fc2(out)
        return out
  1. 初始化模型和定义超参数:
代码语言:txt
复制
input_size = 784  # 输入特征的大小(例如MNIST数据集的图像大小为28x28,展开后为784)
hidden_size = 128  # 隐藏层的大小
num_classes = 10  # 分类的数量(例如MNIST数据集有10个类别)
learning_rate = 0.001  # 学习率
num_epochs = 10  # 训练的轮数
  1. 加载数据集(以MNIST数据集为例):
代码语言:txt
复制
train_dataset = torchvision.datasets.MNIST(root='./data', train=True, transform=transforms.ToTensor(), download=True)
test_dataset = torchvision.datasets.MNIST(root='./data', train=False, transform=transforms.ToTensor())

train_loader = torch.utils.data.DataLoader(dataset=train_dataset, batch_size=100, shuffle=True)
test_loader = torch.utils.data.DataLoader(dataset=test_dataset, batch_size=100, shuffle=False)
  1. 初始化模型和定义损失函数以及优化器:
代码语言:txt
复制
model = FeedforwardNN(input_size, hidden_size, num_classes)
criterion = nn.CrossEntropyLoss()
optimizer = optim.SGD(model.parameters(), lr=learning_rate)
  1. 训练模型:
代码语言:txt
复制
total_step = len(train_loader)
for epoch in range(num_epochs):
    for i, (images, labels) in enumerate(train_loader):
        images = images.reshape(-1, input_size)
        
        # 前向传播
        outputs = model(images)
        loss = criterion(outputs, labels)
        
        # 反向传播和优化
        optimizer.zero_grad()
        loss.backward()
        optimizer.step()
        
        if (i+1) % 100 == 0:
            print('Epoch [{}/{}], Step [{}/{}], Loss: {:.4f}'.format(epoch+1, num_epochs, i+1, total_step, loss.item()))
  1. 评估模型的精度:
代码语言:txt
复制
model.eval()  # 设置模型为评估模式
with torch.no_grad():
    correct = 0
    total = 0
    for images, labels in test_loader:
        images = images.reshape(-1, input_size)
        outputs = model(images)
        _, predicted = torch.max(outputs.data, 1)
        total += labels.size(0)
        correct += (predicted == labels).sum().item()
    
    print('精度: {}%'.format(100 * correct / total))

这样,我们就可以使用PyTorch评估和获得前馈神经网络的精度了。

腾讯云相关产品和产品介绍链接地址:

  • 腾讯云PyTorch:https://cloud.tencent.com/product/torch
  • 腾讯云机器学习平台(ModelArts):https://cloud.tencent.com/product/ma
  • 腾讯云GPU云服务器:https://cloud.tencent.com/product/cvm_gpu
  • 腾讯云弹性MapReduce:https://cloud.tencent.com/product/emr
  • 腾讯云云数据库MySQL版:https://cloud.tencent.com/product/cdb_mysql
  • 腾讯云云服务器(CVM):https://cloud.tencent.com/product/cvm
  • 腾讯云对象存储(COS):https://cloud.tencent.com/product/cos
  • 腾讯云区块链服务(BCS):https://cloud.tencent.com/product/bcs
  • 腾讯云物联网通信(IoT Hub):https://cloud.tencent.com/product/iothub
  • 腾讯云移动推送(TPNS):https://cloud.tencent.com/product/tpns
  • 腾讯云云函数(SCF):https://cloud.tencent.com/product/scf
  • 腾讯云云原生应用引擎(TKE):https://cloud.tencent.com/product/tke
  • 腾讯云音视频处理(VOD):https://cloud.tencent.com/product/vod
  • 腾讯云人工智能(AI):https://cloud.tencent.com/product/ai
  • 腾讯云云安全中心(SSC):https://cloud.tencent.com/product/ssc
  • 腾讯云云监控(Cloud Monitor):https://cloud.tencent.com/product/monitor
  • 腾讯云云审计(Cloud Audit):https://cloud.tencent.com/product/cam
  • 腾讯云云解析(DNSPod):https://cloud.tencent.com/product/dnspod
  • 腾讯云云市场:https://market.cloud.tencent.com/
页面内容是否对你有帮助?
有帮助
没帮助

相关·内容

领券