首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

如何用H2O训练线性支持向量机

H2O是一种开源的分布式机器学习平台,它提供了许多机器学习算法和工具,包括线性支持向量机(Linear Support Vector Machine,简称LSVM)。

线性支持向量机是一种监督学习算法,用于二分类和多分类问题。它的目标是找到一个最优的超平面,将不同类别的样本分开,并尽可能地最大化分类间的间隔。在训练过程中,LSVM通过优化一个凸二次规划问题来确定超平面的参数。

使用H2O训练线性支持向量机可以按照以下步骤进行:

  1. 准备数据:将数据集准备为适合训练的格式,可以使用H2O提供的数据导入功能,支持多种数据格式。
  2. 创建H2O集群:使用H2O提供的API或命令行工具创建一个H2O集群,该集群将用于分布式训练。
  3. 导入数据:使用H2O的数据导入功能将准备好的数据集导入到H2O集群中。
  4. 定义模型:使用H2O的API选择线性支持向量机算法,并设置相应的参数,如正则化参数、核函数等。
  5. 训练模型:使用H2O的训练函数对定义好的模型进行训练,可以指定训练的迭代次数、学习率等参数。
  6. 评估模型:使用H2O的评估函数对训练好的模型进行评估,可以计算准确率、召回率、F1值等指标。
  7. 使用模型:训练完成后,可以使用H2O的预测函数对新的数据进行分类预测。

H2O提供了丰富的机器学习算法和工具,可以帮助开发者快速构建和训练模型。对于线性支持向量机,H2O提供了H2O-3平台,它是一个基于H2O的开源机器学习和深度学习平台,支持分布式计算和大规模数据处理。在H2O-3中,线性支持向量机算法可以通过H2O的API进行调用和训练。

更多关于H2O和线性支持向量机的信息,可以参考腾讯云的H2O产品介绍页面:H2O产品介绍

页面内容是否对你有帮助?
有帮助
没帮助

相关·内容

【原创】支持向量原理(一) 线性支持向量

如果不考虑集成学习的算法,不考虑特定的训练数据集,在分类算法中的表现SVM说是排第一估计是没有什么异议的。 SVM是一个二元分类算法,线性分类和非线性分类都支持。...可以看到,它就是感知模型里面的误分类点到超平面距离的分子。对于训练集中m个样本点对应的m个函数间隔的最小值,就是整个训练集的函数间隔。...几何间隔才是点到超平面的真正距离,感知模型里用到的距离就是几何距离。 3. 支持向量‍ 在感知模型中,我们可以找到多个可以分类的超平面将数据分开,并且优化时希望所有的点都被准确分类。...和超平面平行的保持一定的函数距离的这两个超平面对应的向量,我们定义为支持向量,如下图虚线所示。 ? 支持向量到超平面的距离为1/||w||2,两个支持向量之间的距离为2/||w||2。 4....可以看出,这个感知的优化方式不同,感知是固定分母优化分子,而SVM是固定分子优化分母,同时加上了支持向量的限制。 由于1||w||2的最大化等同于1/||w||2的最小化。

95820

【技术分享】线性支持向量

1.介绍   线性支持向量是一个用于大规模分类任务的标准方法。。...它的损失函数是合页(hinge)损失,如下所示 1562126772_54_w219_h33.png   默认情况下,线性支持向量训练时使用L2正则化。线性支持向量输出一个SVM模型。...线性支持向量并不需要核函数,要详细了解支持向量,请参考文献【1】。 2.源码分析 2.1 实例 import org.apache.spark.mllib.classification....在线性支持向量中,使用HingeGradient计算梯度,使用SquaredL2Updater进行更新。 它的实现过程分为4步。参加逻辑回归了解这五步的详细情况。...cumGradient) //损失值 1.0 - labelScaled * dotProduct } else { 0.0 } } }   线性支持向量训练使用

49860
  • python实现支持向量线性支持向量定义(理论一)

    支持向量(support vector machines, SVM)是一种二分类模型,它的基本模型是定义在特征空间上的间隔最大的线性分类器,间隔最大使它有别于感知;SVM还包括核技巧,这使它成为实质上的非线性分类器...即为分离超平面,对于线性可分的数据集来说,这样的超平面有无穷多个(即感知),但是几何间隔最大的分离超平面却是唯一的。 ? 定义训练集: ? 其中, ? , ? , ? 为第 ?...个特征向量, ? 为类标记,当它等于+1时为正例;为-1时为负例。再假设训练数据集是线性可分的。 在超平面wx+b=0确定的情况下,|wx+b|能够相对地表示x距超平面的远近。...假设我们成比例的改变w和b,比如变为2w和2b,超平面没有变,但是函数间隔却会变为原来的两倍,因此,可以对法向量w施加某些约束,规范化||w||=1,使得间隔是确定的,这时函数间隔就变为几何间隔。...也就是说,现在支持向量转换为以下问题了: ?

    81520

    支持向量原理(五)线性支持回归

    支持向量原理(一) 线性支持向量 支持向量原理(二) 线性支持向量的软间隔最大化模型 支持向量原理(三)线性不可分支持向量与核函数 支持向量原理(四)SMO算法原理 支持向量原理...(五)线性支持回归     在前四篇里面我们讲到了SVM的线性分类和非线性分类,以及在分类时用到的算法。...SVM回归模型的损失函数度量     回顾下我们前面SVM分类模型中,我们的目标函数是让$\frac{1}{2}||w||_2^2$最小,同时让各个训练集中的点尽量远离自己类别一边的的支持向量,即$y_i...不可能是让各个训练集中的点尽量远离自己类别一边的的支持向量,因为我们是回归模型,没有类别。...2) 仅仅使用一部分支持向量来做超平面的决策,无需依赖全部数据。     3) 有大量的核函数可以使用,从而可以很灵活的来解决各种非线性的分类回归问题。

    50940

    机器学习(15)之支持向量原理(一)线性支持向量

    如果不考虑集成学习的算法,不考虑特定的训练数据集,在分类算法中的表现SVM说是排第一估计是没有什么异议的。 SVM是一个二元分类算法,线性分类和非线性分类都支持。...对于训练集中m个样本点对应的m个函数间隔的最小值,就是整个训练集的函数间隔。 函数间隔并不能正常反应点到超平面的距离,在感知模型里我们也提到,当分子成比例的增长时,分母也是成倍增长。...为了统一度量,我们需要对法向量w加上约束条件,这样我们就得到了几何间隔γ,定义为: ? 支持向量 在感知模型中,我们可以找到多个可以分类的超平面将数据分开,并且优化时希望所有的点都离超平面远。...可以看出,这个感知的优化方式不同,感知是固定分母优化分子,而SVM是固定分子优化分母,同时加上了支持向量的限制。由于1||w||2的最大化等同于12||w||22的最小化。...注意到,对于任意支持向量(xx,ys),都有 ?

    1.1K60

    python实现支持向量之求解线性支持向量(理论二)

    上节讲到了支持向量转换为以下问题了: ? 在线性可分的情况下,将距离分离超平面最近的样本点的实例称为支持向量支持向量是使yi(wxi+b) -1=0的点。...对于yi=+1的正例点,支持向量在超平面wx+b=1上,对于yi=-1的负例点,支持向量在wx+b=-1上,如图所示: ? ? 举个例子: ? ?...使用对偶算法求解支持向量的好处: 1、对偶问题更易于求解 2、自然引入核函数,进而推广到非线性分类问题 如何利用对偶算法来求解? 首先建立拉格朗日函数: ? 其中αi>=0,i=1,2,...,N。...所以,支持向量就可以转换为以下问题了: ? ? 举个计算的例子: ? ? 以上摘自统计学习方法,仅为自己方便复习所用。

    48410

    TensorFlow实现线性支持向量SVM

    [点击蓝字,一键关注~] 今天要说的是线性可分情况下的支持向量的实现,如果对于平面内的点,支持向量的目的是找到一条直线,把训练样本分开,使得直线到两个样本的距离相等,如果是高维空间,就是一个超平面。...然后我们简单看下对于线性可分的svm原理是啥,对于线性模型: ? 训练样本为 ? 标签为: ? 如果 ? 那么样本就归为正类, 否则归为负类。...这样svm的目标是找到W(向量)和b,然后假设我们找到了这样的一条直线,可以把数据分开,那么这些数据到这条直线的距离为: ?...其中Ns表示的就是支持向量,K(Xn,Xm)表示核函数。 下面举个核函数的栗子,对于二维平面内的点, ?...好了,下次我们说非线性可分的情况是什么样子的,还有什么是松弛变量这些东东。。。

    1.4K40

    TensorFlow实现非线性支持向量

    上一次说的是线性支持向量的原理和tf实现问题,把SVM的原理简单用公式推导了一下,SVM这块还有几个问题没有解释,比如经验风险,结构风险,VC维,松弛变量等。...今天主要是解释几个概念然后实现非线性支持向量。 风险最小化 期望风险 对于一个机器学习模型来说,我们的目的就是希望在预测新的数据的时候,准确率最高,风险最小,风险函数可以定义为: ?...而支持向量是基于结构风险最小的,即使的经验风险和VC置信风险的和最小。 然后看下下面这个图, ? 下面的S1,S2,......这就是为什么会提出支持向量。 4. 松弛变量 上一次讲的时候,对于线性可分情况下,优化目标的约束条件是这个: ?...对于支持向量来说,松弛变量都是0,此时满足: ? 即: ? 求解上式就可以得到: ? ? 对比一下,线性可分情况: ? 其中Ns表示的是所有的支持向量

    1.3K70

    【原创】支持向量原理(五)线性支持回归

    SVM回归模型的损失函数度量 回顾下我们前面SVM分类模型中,我们的目标函数是让最小,同时让各个训练集中的点尽量远离自己类别一边的的支持向量,即。...不可能是让各个训练集中的点尽量远离自己类别一边的的支持向量,因为我们是回归模型,没有类别。对于回归模型,我们的目标是让训练集中的每个点,尽量拟合到一个线性模型。...2) 仅仅使用一部分支持向量来做超平面的决策,无需依赖全部数据。 3) 有大量的核函数可以使用,从而可以很灵活的来解决各种非线性的分类回归问题。...如果内存循环找到的点不能让目标函数有足够的下降, 可以采用遍历支持向量点来做,直到目标函数有足够的下降, 如果所有的支持向量做都不能让目标函数有足够的下降,可以跳出循环,重新选择 4.3 计算阈值b和差值...写完这一篇, SVM系列就只剩下支持向量回归了,胜利在望!

    1.1K70

    何用Python实现支持向量(SVM)

    SVM支持向量是建立于统计学习理论上的一种分类算法,适合与处理具备高维特征的数据集。...SVM算法的数学原理相对比较复杂,好在由于SVM算法的研究与应用如此火爆,CSDN博客里也有大量的好文章对此进行分析,下面给出几个本人认为讲解的相当不错的: 支持向量通俗导论(理解SVM的3层境界):...可选的核函数有这么几种: 线性函数:形如K(x,y)=x*y这样的线性函数; 多项式函数:形如K(x,y)=[(x·y)+1]^d这样的多项式函数; 径向基函数:形如K(x,y)=exp(-|x-y|^...probability=False, random_state=None, shrinking=True, tol=0.001, verbose=False) 0.492857142857 可见在该数据集上,线性分类器效果最好...看这类非线性的数据SVM表现如何: 测试数据生成代码如下所示: [python] view plaincop ''''' 数据生成 ''' h = 0.1 x_min, x_max = -1, 1

    1.6K90

    svm 之 线性可分支持向量

    定义:给定线性可分训练数据集,通过间隔最大化或等价的求解凸二次规划问题学习获得分离超平面和分类决策函数,称为线性可分支持向量。...x_i+b)}{‖w‖}$    也是点到超平面真正的距离(不再是间接的表示了),所以几何间隔其实是带符号的距离; 几何间隔和函数间隔之间的关系:$γ=\frac{γ^*}{‖w‖}$ 3、间隔最大化 线性可分支持向量的目的是...\quad y_i (w⋅x_i+b)≥1 ,\qquad i=1,2…N$; 算法:线性可分支持向量学习算法 -- 最大间隔算法 输入:训练数据集 $T{(x_1,y_1 ),(x_2,y_2 ),...算法:线性可分支持向量 -- 对偶学习算法 输入:训练数据集 $T{(x_1,y_1 ),(x_2,y_2 ),…,(x_n,y_n )}  ,  x∈R^n  ,  y ∈ \left \{ +1,...线性可分支持向量(硬间隔最大化)针对的是线性可分训练数据集,然而,现实世界里有很多数据集是线性不可分的(样本数据中有噪声或特异点),这种情况下改怎么办?

    63050

    【原创】支持向量原理(二) 线性支持向量的软间隔最大化模型-3.5

    ---- 在支持向量原理(一) 线性支持向量中,我们对线性可分SVM的模型和损失函数优化做了总结。...最后我们提到了有时候不能线性可分的原因是线性数据集里面多了少量的异常点,由于这些异常点导致了数据集不能线性可分,本篇就对线性支持向量如何处理这些异常点的原理方法做一个总结。 1....线性分类SVM面临的问题 有时候本来数据的确是可分的,也就是说可以用 线性分类SVM的学习方法来求解,但是却因为混入了异常点,导致不能线性可分,比如下图,本来数据是可以按下面的实线来做超平面分离的,可以由于一个橙色和一个蓝色的异常点导致我们没法按照上一篇线性支持向量中的方法来分类...如果不考虑集成学习的算法,不考虑特定的训练数据集,在分类算法中的表现SVM说是排第一估计是没有什么异议的。 SVM是一个二元分类算法,线性分类和非线性分类都支持。...可以看到,它就是感知模型里面的误分类点到超平面距离的分子。对于训练集中m个样本点对应的m个函数间隔的最小值,就是整个训练集的函数间隔。

    86510

    简单易学的机器学习算法——线性支持向量

    一、线性支持向量的概念     线性支持向量是针对线性不可分的数据集的,这样的数据集可以通过近似可分的方法实现分类。...对于这样的数据集,类似线性可分支持向量,通过求解对应的凸二次规划问题,也同样求得分离超平面 ? 以及相应的分类决策函数 ?...二、与线性可分支持向量的比较    image.png 三、线性支持向量的原理    image.png image.png 四、线性支持向量的过程 image.png 五、实验的仿真 1、解决线性可分问题...    与博文“简单易学的机器学习算法——线性可分支持向量”实验一样,其中 ?...(线性不可分问题) MATLAB代码: %% 线性支持向量 % 清空内存 clear all; clc; % 导入测试数据 A = load('testSet.txt'); % 处理数据的标签

    76960

    支持向量1--线性SVM用于分类原理

    ,TSVM) 支持向量线性和非线性分类中,效果都非常好。...非线性多维支持向量SVC sklearn中非线性多维支持向量同时支持线性线性模型。...无论是线性支持向量还是非线性支持向量,都是由输入空间转换到特征空间,支持向量的学习是特征空间进行的。...---- 定义:线性可分支持向量 给定线性可分训练数据集合,通过间隔最大化或等价地求解相应的凸二次规划问题学习得到的分离超平面为 相应的分类决策函数 为参数向量, 是特征向量, 是截距...决策边界 线性不可分与软间隔最大化 线性可分问题的支持向量学习方法,对线性不可分训练数据是不适用的,因为约束条件并不能成立。 ?

    1.7K40

    简单易学的机器学习算法——线性支持向量

    一、线性支持向量的概念     线性支持向量是针对线性不可分的数据集的,这样的数据集可以通过近似可分的方法实现分类。...二、与线性可分支持向量的比较     线性支持向量线性可分支持向量最大的不同就是在处理的问题上,线性可分支持向量处理的是严格线性可分的数据集,而线性支持向量处理的是线性不可分的数据集,然而,...这里的线性不可分是指数据集中存在某些点不能满足线性可分支持向量的约束条件: ? 。     具体来讲,对于特征空间上的训练数据集 ? ,且 ? 不是线性可分的,即存在某些特异点不满足 ?...的约束条件,若将这些特异点去除,那么剩下的数据点是线性可分的,由此可见,线性可分支持向量线性支持向量的特殊情况。为了解决这样的问题,对每个样本点 ? 引入一个松弛变量 ? ,且 ?...在线性支持向量中加入了惩罚项,与线性可分支持向量的应间隔最大化相对应,在线性支持向量中称为软间隔最大化。 三、线性支持向量的原理     由上所述,我们得到线性支持向量的原始问题: ? ?

    1K20

    支持向量原理篇之手撕线性SVM

    SVM的英文全称是Support Vector Machines,我们叫它支持向量支持向量是我们用于分类的一种算法。让我们以一个小故事的形式,开启我们的SVM之旅吧。...我们知道相求距离d的最大值,我们首先需要找到支持向量上的点,怎么在众多的点中选出支持向量上的点呢? 上述我们需要面对的问题就是约束条件,也就是说我们优化的变量d的取值范围受到了限制和约束。...我们已经说过,我们是用支持向量上的样本点求解d的最大化的问题的。那么支持向量上的样本点有什么特点呢? 你赞同这个观点吗?所有支持向量上的样本点,都满足如上公式。...上述公式描述的是一个典型的不等式约束条件下的二次型函数优化问题,同时也是支持向量的基本数学模型。...(5)求解准备 我们已经得到支持向量的基本数学模型,接下来的问题就是如何根据数学模型,求得我们想要的最优解。

    1.9K70
    领券