首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

如何添加不均匀间隔、不同比例的二次matplotlib轴

在matplotlib中,可以使用twinx()twiny()函数来添加不均匀间隔、不同比例的二次轴。

对于添加垂直的二次轴,可以使用twinx()函数。下面是一个示例代码:

代码语言:txt
复制
import matplotlib.pyplot as plt

# 创建一个新的图形和轴对象
fig, ax1 = plt.subplots()

# 绘制主轴的数据
x = [1, 2, 3, 4, 5]
y1 = [10, 20, 30, 40, 50]
ax1.plot(x, y1, color='blue')
ax1.set_xlabel('X')
ax1.set_ylabel('Y1')

# 添加一个二次轴对象,并设置比例
ax2 = ax1.twinx()
y2 = [1, 4, 9, 16, 25]
ax2.plot(x, y2, color='red')
ax2.set_ylabel('Y2')

plt.show()

对于添加水平的二次轴,可以使用twiny()函数。下面是一个示例代码:

代码语言:txt
复制
import matplotlib.pyplot as plt

# 创建一个新的图形和轴对象
fig, ax1 = plt.subplots()

# 绘制主轴的数据
x = [1, 2, 3, 4, 5]
y1 = [10, 20, 30, 40, 50]
ax1.plot(x, y1, color='blue')
ax1.set_xlabel('X')
ax1.set_ylabel('Y1')

# 添加一个二次轴对象,并设置比例
ax2 = ax1.twiny()
y2 = [1, 4, 9, 16, 25]
ax2.plot(x, y2, color='red')
ax2.set_xlabel('Y2')

plt.show()

以上代码中,ax1是主轴对象,用于绘制主要数据。ax2是添加的二次轴对象,通过调用twinx()twiny()函数来创建。然后使用plot()函数来绘制二次轴的数据。

这种添加不均匀间隔、不同比例的二次轴的方法适用于需要在同一张图中同时展示两个不同的数据集,且数据的变化范围不同的情况。例如,可以在同一张图中同时展示两个不同的温度曲线,或者展示不同比例的经济指标。

对于腾讯云相关产品和产品介绍链接地址,可以参考腾讯云官方文档或者咨询腾讯云官方客服获得更详细的信息。

页面内容是否对你有帮助?
有帮助
没帮助

相关·内容

  • 大数据能力提升项目|学生成果展系列之七

    导读 为了发挥清华大学多学科优势,搭建跨学科交叉融合平台,创新跨学科交叉培养模式,培养具有大数据思维和应用创新的“π”型人才,由清华大学研究生院、清华大学大数据研究中心及相关院系共同设计组织的“清华大学大数据能力提升项目”开始实施并深受校内师生的认可。项目通过整合建设课程模块,形成了大数据思维与技能、跨界学习、实操应用相结合的大数据课程体系和线上线下混合式教学模式,显著提升了学生大数据分析能力和创新应用能力。 回首2022年,清华大学大数据能力提升项目取得了丰硕的成果,同学们将课程中学到的数据思维和技能成功

    06

    气流组织优化—数据中心节能的魔术手

    引言 1946年数据中心诞生于美国,至今已经历4个阶段近70年的发展历程,数据中心从最初仅用于存储的巨型机,逐渐转向多功能、模块化、产品化、绿色化和智能化。在越来越注重节能和精细化的今天,数据中心的每一个细节设计都闪耀着工程师智慧的光芒。他们对于数据中心的规划设计,不再满足于仅停留在功能这一基本的要求上,现在的数据中心你会看到更多关于节能环保及工程之美、绿色之美等设计理念。 评价数据中心的优劣,与其提供的服务质量,成本控制及绿色程度密切相关。能够提供稳定及具备高可用性的服务是对云服务商和数据中心的基本要求。

    06

    【重磅】谷歌大脑:缩放 CNN 消除“棋盘效应”, 提升神经网络图像生成质量(代码)

    【新智元导读】谷歌研究院官方博客几小时前更新文章,介绍了一种名为“缩放卷积神经网络”的新方法,能够解决在使用反卷积神经网络生成图像时,图片中尤其是深色部分常出现的“棋盘格子状伪影”(棋盘效应,checkboard artifacts)。作者讨论了棋盘效应出现及反卷积难以避免棋盘效应的原因,并提供了缩放卷积 TensorFlow 实现的代码。作者还表示,特意提前单独公开这一技术,是因为这个问题值得更多讨论,也包含了多篇论文的成果,让我们谷歌大脑的后续大招吧。 当我们非常仔细地观察神经网络生成的图像时,经常会看

    08

    数据不平衡问题

    对于一些二分类问题或者多分类问题,部分类别数据相较于其它类别数据而言是要小得多的,这种现象就是数据不平衡问题。数据不平衡问题会导致什么情况呢?假如是基于一些特征判断病人是否患有该疾病,且该疾病是一个小概率获得的疾病,假设概率为0.0001, 那么表明有10000个来看病的人中只有一个人患有该疾病,其余9999个人都是正常病人。如果用这样的一批数据进行训练模型算法,即使该模型什么都不学,都判定为正常人,其准确率高达0.9999, 完全满足上线要求。但我们知道,这个模型是不科学的,是无用的模型。这种数据分布严重不平衡的情况下,模型将具有严重的倾向性,倾向于数据样本的多的类别,因为模型每次猜样本多对应的类别的对的次数多。因此,如果直接将严重数据不平衡的数据拿来直接训练算法模型,将会遇到上述问题。一般在10倍以上可以判定为数据不平衡问题。

    02

    一个执行计划异常变更的案例 - 外传之绑定变量窥探

    上一篇文章《一个执行计划异常变更的案例 - 前传》(http://blog.csdn.net/bisal/article/details/53750586),介绍了一次执行计划异常变更的案例现象,这两天经过运行同事,以及罗大师的介绍,基本了解了其中的原因和处理方法,这个案例其实比较典型,涉及的知识点很多,有数据库新特性,有SQL相关的,还有应用数据质量问题,对于大师来说,是信手拈来的一次问题排查和处理,但至少对我这个仍旧艰难前行的初学者来说,值得回味的地方很丰富,所以有必要针对其中涉及的知识点做一下梳理,其中一些知识我之前了解的并不全面和深入,就自身来讲,整理学习一次,也是对自己的锻炼。

    03

    一致性哈希(Consistent Hashing)

    在大型web应用中,缓存可算是当今的一个标准开发配置了。在大规模的缓存应用中,应运而生了分布式缓存系统。分布式缓存系统的基本原理,大家也有所耳闻。key-value如何均匀的分散到集群中?说到此,最常规的方式莫过于hash取模的方式。比如集群中可用机器适量为N,那么key值为K的的数据请求很简单的应该路由到hash(K) mod N对应的机器。的确,这种结构是简单的,也是实用的。但是在一些高速发展的web系统中,这样的解决方案仍有些缺陷。随着系统访问压力的增长,缓存系统不得不通过增加机器节点的方式提高集群的相应速度和数据承载量。增加机器意味着按照hash取模的方式,在增加机器节点的这一时刻,大量的缓存命不中,缓存数据需要重新建立,甚至是进行整体的缓存数据迁移,瞬间会给DB带来极高的系统负载,设置导致DB服务器宕机。 那么就没有办法解决hash取模的方式带来的诟病吗?看下文。

    02

    大数据开发岗面试复习30天冲刺 - 日积月累,每日五题【Day29】——数据倾斜2

    解决方案:避免数据源的数据倾斜 实现原理:通过在Hive中对倾斜的数据进行预处理,以及在进行kafka数据分发时尽量进行平均分配。这种方案从根源上解决了数据倾斜,彻底避免了在Spark中执行shuffle类算子,那么肯定就不会有数据倾斜的问题了。 方案优点:实现起来简单便捷,效果还非常好,完全规避掉了数据倾斜,Spark作业的性能会大幅度提升。 方案缺点:治标不治本,Hive或者Kafka中还是会发生数据倾斜。 适用情况:在一些Java系统与Spark结合使用的项目中,会出现Java代码频繁调用Spark作业的场景,而且对Spark作业的执行性能要求很高,就比较适合使用这种方案。将数据倾斜提前到上游的Hive ETL,每天仅执行一次,只有那一次是比较慢的,而之后每次Java调用Spark作业时,执行速度都会很快,能够提供更好的用户体验。 总结:前台的Java系统和Spark有很频繁的交互,这个时候如果Spark能够在最短的时间内处理数据,往往会给前端有非常好的体验。这个时候可以将数据倾斜的问题抛给数据源端,在数据源端进行数据倾斜的处理。但是这种方案没有真正的处理数据倾斜问题。

    02
    领券